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Abstract
While remarkable progress has been made in building autonomous agents that can
help us at complex tasks, these have typically been studied in isolated environments.
To build agents that can be deployed in the real world, we need to study them in
more human-centric settings, where they can interact with other humans and agents.
Moreover, for agents to assist us effectively, they need to be able to operate in these
environments while understanding our intentions and beliefs, and learn to coordinate
with us effectively and safely.

This thesis investigates the development of such assistive agents through simu-
lation environments. In the first part of the thesis, we introduce VirtualHome, a
multi-agent platform for simulating human activities in household environments, and
introduce a knowledge base of daily human activities that can be executed in the
simulator. Then, we present agents that can perform different tasks in the environ-
ment given human descriptions or demonstrations of the activity. Finally, we study
agents that can perform activities together with other humans in the environment.
We propose a framework to simulate humans in the environment at scale and pro-
pose two challenges, Watch-And-Help and Online-Watch-And-Help, to benchmark
the performance of different assistive agents, and test their effectiveness in assisting
real humans performing activities in VirtualHome. Together, the methods and tools
presented in this thesis provide a way to study assistive agents in simulation, allowing
to develop these agents safely and at scale before deploying them into the real world.

Thesis Supervisor: Antonio Torralba
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

A long-term goal of AI is to build general-purpose autonomous agents that can assist

us with everyday tasks, that is, agents that can understand the goals we want to

achieve and interact with us to complete them effectively and safely. This is a task

that not only will help us study many core scientific problems in Artificial Intelligence

or Robotics, but one that has the potential to transform our lives, from providing

accessible childcare or eldercare at a time of labor shortage [117], assisting people

with disabilities, to helping us at home or the workplace.

Over recent years, significant progress has been made in building and deploying

robots that can perform complex tasks, with notable successes in spaces such as man-

ufacturing or warehouse logistics. However, in most cases, these robots have focused

on very specific tasks with minimal human interaction. The challenge in developing

more general-purpose assistive agents is that they need to be able to perform a much

broader set of tasks and skills in more unconstrained environments. Moreover, they

need to interact concurrently with humans who may exhibit very diverse behaviors

and must be kept safe. How can we build agents with these properties?

One possibility is to build agents that learn to interact through real-world ex-

perience. A variety of techniques in machine learning has allowed the develop-

ment of agents that can learn tasks from large-scale interactions in real environ-

ments [49, 51, 79] or datasets of human demonstrations [9, 115]. The advantage of

this approach is that the real world provides a source of rich data that may be valuable
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to learning complex tasks, as well as information about how humans behave in these

settings. At the same time, it is costly to obtain this source of data, as it requires

thousands of hours of interactions in the environment, or human demonstrations.

This makes it hard to scale to a large number of tasks. Furthermore, as agents inter-

act in the environment, they could take actions that put humans in danger, posing

safety challenges, particularly for tasks involving interactions with humans.

A second approach is to develop world models that agents can leverage to learn to

perform tasks more effectively. These can include models of the environment [57, 12],

modeling the state changes as agents take actions in it, or models of humans, de-

scribing the actions they could take given an environment state [26, 104, 65, 119].

World models allow us to develop agents safely and with fewer data, but the resulting

agents will only be useful if the models are sufficiently representative of the real world.

Given the difficulty of learning these kinds of models, many of these approaches focus

on reduced state and action spaces, ignoring physical or perceptual properties that

agents may need to reason with when interacting in the real world. To address this,

there has been an increasing interest in developing 3d simulators that can provide

realistic representations of the environment [121, 20, 160, 74, 45, 42, 68]. These sim-

ulated environments allow us to train and test agents under more realistic conditions

at scale and have enabled agents to learn behaviors that can transfer into the real

world [150, 76, 8]. Despite these successes, most current simulation approaches have

focused on agents interacting in isolation in the environment, ignoring the effect of

humans in the environment or the agent behavior. In order to build agents that suc-

cessfully assist humans, we need to test them in more human-centric settings, with

models of how these humans behave when interacting with agents, metrics to eval-

uate cooperation with humans and algorithms that allow agents to coordinate with

humans safely.

This thesis investigates how to build socially intelligent agents that can assist

humans in household activities via simulation environments. For this, we need to

make progress in three areas that will be guiding this work. First, we must consider

the kinds of platforms and data necessary to develop and test assistive agents safely.
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Second, we need to develop agents that humans can command easily and that can

operate on these platforms to do everyday tasks. Finally, we need to study how these

agents should interact with humans safely and effectively to be helpful in practice.

In Part I of this thesis, we discuss what properties are required in a simulator to

enable the development of socially intelligent agents. To address these, we present

in Chapter 2 VirtualHome, a multi-agent platform to simulate household activities.

In contrast to current simulators, VirtualHome focuses on representing both complex

environments and tasks and the humans interacting in these environments. This is a

key property to ensure that agents can be tested and trained to operate in realistic

settings with other humans. While VirtualHome allows representing the activities we

want agents to perform, we still need information about how these activities should

be performed. For this, we introduce, in Chapter 3, VirtualHome ActivityPrograms,

a knowledge base of household activities executable in the simulator and natural

language descriptions for each activity. With this knowledge base, we can use Vir-

tualHome to generate demonstrations of real-world activities, which can be used to

instruct agents how to perform household tasks.

In Part II, we present different approaches to build agents that can perform ev-

eryday activities in VirtualHome. We aim to build agents that can not only perform

complex tasks in the environment but also easily commanded by humans. We thus in-

troduce, in Chapter 4, agents that perform activities by translating a natural language

description or a video demonstration of the task into actions that they can execute in

the environment. In some cases, it is impossible to perform the exact instructions in

the environment. In Chapter 5, we present agents that infer the implicit goal of the

human and adapt their actions to new environments to achieve these goals, rather

than perform a literal translation of the given instructions. The work presented in

these two chapters allows us to build agents that can perform a wide range of tasks in

the environment while providing a natural interface to instruct them, which is crucial

if we want agents to assist everyday users.

Under Part III, we study how to build agents that not only operate in isolation

in the environment but can assist humans as they are also interacting in it. This is
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the setting in which we expect agents to operate in real life. To provide a scalable

way to test this setting, we develop agents that serve as a proxy for humans in

the environment and propose different agents that can infer their goals and assist

these proxy-humans in performing them. We propose two benchmarks to evaluate

the effectiveness of assistive agents, which we measure by their capacity to infer the

human goal and how efficiently they assist humans in such goal. In the first challenge,

Watch-And-Help, described in Chapter 6, agents observe a human activity and are

asked to assist a human in performing that same activity subsequently. In Chapter 7,

we introduce the second challenge, Online Watch-And-Help. Here agents are not given

a prior demonstration of the task and have to concurrently infer the task and assist

the human with what they know about the task so far. We propose an approach that

leverages uncertainty over the inferred goal so that the agent can focus on the parts

of the task that it is more sure about and correct its behavior as it gathers more

evidence about the task they need to perform. We conduct studies with real humans

participating in both challenges, assisted by the proposed agents. Our results show

that the assistive agents can be helpful to real humans and that testing these agents

with proxy humans can be indicative of their performance when assisting real ones.

This thesis covers content from [109, 84, 110, 111]. I want to credit my co-authors

for their excellent work; this thesis would not be possible without them.
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Part I

A platform to develop assistive agents
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Our goal is to build socially intelligent agents that operate in simulation. Thus,

the first question we need to address is what kind of platform is needed to develop our

agents. We focus on studying agents that can perform daily tasks in a household, so

our platform should be able to represent indoor environments, and support everyday

household activities.

The study of general-purpose agents that can perform indoor tasks has gained

wide popularity over recent years, spawning a wide number of environments [74, 80,

45, 161] and benchmarks [127, 14] to study this problem. While some of these works

were posterior to the start of this thesis, why not leveraging these platforms and

benchmarks to study our questions? Most of these platforms focus on testing agents

that interact isolated in indoor environments, ignoring the effect that other humans

in the environment may have in the agent’s behavior. In order to study agents that

coordinate with and assist humans, we need to be able to represent these humans in

the environment.

Part I of this thesis presents the platform we build in order to achieve this.

In Chapter 2, we present VirtualHome a multi-agent household activity simulator.

Like [80, 74, 145, 43], VirtualHome allows to represent complex indoor environments

and a wide range of actions that can be combined to perform long horizon tasks.

Unlike these works, VirtualHome includes models of humans that execute these tasks

in the environment, allowing to 1) generate demonstrations of human avatars per-

forming these tasks, providing a way to instruct agents and 2) represent humans that

can interact with our proposed agents to perform complex activities.

To provide agents with information about how to do everyday tasks, in Chapter 3

we present a knowledge base of household activities, with natural language descrip-

tions of how to perform them, and instructions allowing to represent them in our

simulator.
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Chapter 2

VirtualHome: A Multi-Agent

Household Simulator

2.1 Introduction

The goal of a virtual environment here is to provide a playground for agents to perform

tasks before being deployed in the real world. Given that it is impossible to build

a simulator that perfectly represents reality, we need to define which kind of tasks

and domains should be the focus of our platform. Here, we want a simulator where

agents can learn to perform household activities in indoor environments, understand

the activities that humans are doing in the environment, and assist humans in doing

them. Thus, we aim to design a platform with the following properties:

• Household Environments: the simulator should represent indoor household

environments, with different rooms, and objects that agents can interact with.

• Long-Horizon Tasks: we want to focus on representing long-horizon tasks,

including multiple object interactions. Rather than focusing on low-level ma-

nipulation problems, the simulator should support mid and high level action

primitives, allowing to easily specify complex tasks.

• Human-Centric: just like robots do not act in isolation in the real world,

the simulator should include human-like agents that can perform tasks in the
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environment as other agents are interacting in it.

• Realistic: the simulator should represent realistic environments, including the

appearance of objects and scenes, as well as the object dynamics as agents

interact with them. It should also support realistic human motions, so that

agents can infer which actions or activities humans are doing.

While in recent years there have been multiple simulators to represent household

environments [121, 20, 160, 74, 45, 42, 68], they generally focus on the interaction

between agents and the environment, and not on modeling humans that may be in-

teracting in it. To address this, we propose VirtualHome, a 3D multi-agent household

simulator for human-AI collaboration. Like [121, 20, 160, 74, 45, 42, 68], VirtualHome

focuses on representing realistic household environments, with interactive objects that

change their states as agents interact with them. The simulator supports mid-level

(e.g. move forward, turn left) and high-level actions in the environment (e.g. walk

to the kitchen, place apple in fridge), allowing to represent long-horizon tasks with

few commands. Unlike existing simulators, agents are represented as humans, that

are animated to display realistic motions when doing actions in the environment.

These humans can interact in the environments as other agents are doing tasks in it,

allowing to develop agents that can coordinate with them effectively.

The goal of VirtualHome is to provide a platform that can be used to teach

agents how to interact in environments, but also to understand and represent human

behaviors and activities, and study how agents should interact or assist these humans.

In the rest of this chapter, we describe the main properties of the simulator and

compare it with similar platforms.

2.2 Comparison with Existing Platforms

Given the wide use of simulation platforms in many scientific and engineering fields,

we focus here in comparing VirtualHome with platforms that involve household en-

vironments.
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Navigation. There have been many virtual environments designed to develop agents

that could interact in a household. Some of these works [121, 120] focus on provid-

ing photo-realistic representations of household environments and use them to train

agents that can learn to navigate from visual input, showing that agents trained in

simulation can transfer these skills in the real world [150, 69]. However, these works

do not support interactive objects and therefore are limited to navigation tasks that

do not require interaction.

Manipulation. Simulation environments are also widely used for robotic manipula-

tion, and a few works focus on manipulation in the context of household objects or

environments [78, 161]. Lee et al. [78] provide an environment for furniture assembly

tasks, and [161] provides a suite of rigid, part-based and soft-body everyday objects to

learn manipulation tasks. However, these environments do not support long-horizon

tasks, or actions and object states that are required to represent everyday activities.

In our work, we study long-horizon activities and chose to focus on the task-planning

aspects associated to it. Thus, we provide high-level actions that assume access to

low-level manipulation primitives and we abstract away low-level physical or material

properties of the objects in the environments.

Long-Horizon Tasks. Most related to our work are simulators that focus on long-

term activities [26, 42, 74, 145, 80, 20]. These platforms provide higher level com-

mands that allow for long-horizon tasks with a fewer set of actions. They include

interactive objects, that change their state when agents take actions on them or due

to the effect of time. For instance, [80] includes objects that can be cooked or get dirty

over time. Some of these simulators allow for multi-agent interactions, but focus on

developing agents that are jointly controlled to perform tasks in the environment. In

our work, we focus on modeling human activities as well as humans that can interact

with agents in performing these activities. For this reason, we include human agents

with actions and motions that allow to represent human behaviors. Posterior to our

work, [45] proposed an environments with humanoids that could represent human

activities. However their focus is only in kitchen environments, limiting the range

of possible tasks. Furthermore they only support a single agent at a time, restrict-
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Platform Action Views Realistic Humanoid Multi-agent
Overcooked [26] High/Low 3rd Person No No Yes

TDW [42] High/Low 3rd Person/Ego Yes No Yes
VRKitchen [45] High/Low 3rd Person/Ego Yes Yes No
AI2-THOR [74] High/Low Ego Yes No Yes

iGibson [80] Low Ego Yes No No
Habitat 2.0 [145] Low Ego Yes No No

VirtualHome High/Low 3rd Person/Ego Yes Yes Yes

Table 2.1: We compare VirtualHome with existing embodied single-agent and multi-
agent platforms on the following aspects: 1) action space (high-level actions and/or
low-level actions), 2) views (3rd person and/or egocentric views), 3) realistic environ-
ments, 4) humanoid agents and 5) multi-agent capabilities.

ing from studying Human-AI collaboration scenarios. Table 2.1 summarizes the key

features of the proposed VirtualHome in comparison with these virtual platforms.

The key features of our environment include i) multiple camera views, allowing to

interact in the environment and generate demonstrations of tasks, ii) both high-level

and low-level actions, iii) humanoid avatars with realistic motion simulations and iv)

multi-agent capacities. Critically, VirtualHome enables collecting and displaying hu-

man activities in realistic environments, which is a key function necessarily for social

perception and human-AI collaboration. In contrast, existing multi-agent platforms

do no offer such functionality.

Humans. There has been an increasing interest in representing humans in simula-

tion. Most of these works focus on representing human motions or low-level actions,

collected or learned through human motion capture data [153, 106, 53, 170, 16]. While

these works enable a high fidelity representation of human poses and motions, they

model humans in static environments or interactions with a limited set of objects [16]

and therefore do not allow to represent activities that involve interacting with the

environment. Moreover, they are designed to generate images and videos and not

as a platform where agents can interact concurrently. Recent work [80] has started

focusing in representing humans to be tested with agents but they only focus on

navigation tasks. There is a growing interest in representing realistic interactions

between humans and robots [28, 38], but they provide very simple representations
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Figure 2-1: Agents available in VirtualHome.

of humans, in some cases being passive bodies, or focus very specific tasks, such as

object handovers [28]. Humanoids in VirtualHome are driven via animation and in-

verse kinematics, and therefore exhibit less realistic motions than some of the above

works, but they can interact in the environment with other agents, and represent a

wide variety of tasks which is key to study human-AI collaboration.

2.3 Main Concepts

We implemented our VirtualHome simulator using the Unity3D game engine which

allows us to exploit its kinematic, physics and navigation models, as well as user-

contributed 3D models available through Unity’s Assets store. The simulator is de-

signed to allow agents to interact in indoor environments, or render videos of human

activities. All interactions in VirtualHome work through three components: agents,

representing human avatars that will perform actions; environments, representing

different apartments with objects that agents can interact with, and programs, that

define how agents interact with the environment. We describe these components

below.

2.3.1 Agents

Agents are represented as humanoid avatars which are rigged and animated to gen-

erate plausible motions when they interact in the environment. Agents are equipped
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with navigation models, allowing to navigate towards different objects or rooms in

the environment using shortest-path planning. The available agents are shown in

Figure 2-1.

2.3.2 Environments

Agents interact in household environments, containing different rooms and interactive

objects in them. The simulator contains 7 different apartments, which we obtained

from the Unity Assets store. On average, each home contains 357 object instances

(86 per room). To support a wider range of activities, we collected objects from

additional 30 object classes via the 3D warehouse 1. To ensure visual diversity, we

collected at least 3 different models per class. The apartments are shown in 2-2.

The apartments can be modified by adding, removing, and changing the location of

the objects in them. Furthermore, VirtualHome allows to generate new apartments

procedurally, modifying the number of rooms, their layout and the objects in them,

allowing to generate an infinite number of unique environments.

All environments are represented via an EnvironmentGraph, a scene graph where

every node corresponds an object in the environment and edges represent spatial

relationships (e.g. “apple inside fridge”, “plate on table”, “table near fridge”). Each

node is annotated with an identifier number, the object name, its location in the

environment and size, and its states (e.g. “microwave is on and closed”).

2.3.3 Activities via Programs

Our simulator should allow for both humans and robots to perform complex activities

in the environment. We aim to provide a representation that can unify how different

agents perform activities, abstracting their differences through action primitives. To

this end, we propose to represent these activities via programs, describing the steps

to accomplish a given task. A program contains a sequence of simple symbolic in-

structions, each referencing an atomic action (e.g. “sit”) or interaction (e.g. “pick-up

1
https://3dwarehouse.sketchup.com.
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Apartment 1 Apartment 2 Apartment 3 Apartment 4

Apartment 5 Apartment 6 Apartment 7

Figure 2-2: 3D households in our VirtualHome. Notice the diversity in room and object
layout and appearance. Each home has on average 357 objects.

Table 2.2: List of atomic actions available in VirtualHome.

Action name Command Description
Walk [Walk] $1 Walks to room or object $1
Run [Run] $1 Runs to room or object $1

Walk Towards [Walktowards] $1 Walks 1 meter towards room or object $1

Walk Forward [Walkforward] Walks 1 meter forward
Turn Left [Turnleft] Rotates 30 degrees left

Turn Right [Turnright] Rotates 30 degrees right
Sit [Sit] $1 Sits on object $1

Stand Up [Standup] Stands up
Grab [Grab] $1 Grabs object $1

Open [Open] $1 Opens object $1

Close [Close] $1 Closes object $1

Put On [Putback] $1 $2 Puts object $1 on top of object $2

Put In [Putin] $1 $2 Puts object $1 inside of object $2

Switch On [Switchon] $1 Turns on object $1
Switch Off [Switcho↵] $1 Turns off object $1

Drink [Close] $1 Drinks from object $1, if in hand
Touch [Touch] $1 Touches object $1

Look At [Lookat] $1 Turns to object $1
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object”) and a number of objects that the action refers to (e.g., “put juice on table”).

Instructions may also contain modifiers, providing detail about how an action should

be performed (“e.g. put juice on table at coordinates (3,2)”).

More precisely, a program is represented as a sequence of steps, where step t can

be written as:

More precisely, step t in the program can be written as the instruction:

step
t
= [actiont] hobjectt,1i(idt,1) ... hobjectt,ni(idt,n) (2.1)

Here, id is a unique identifier of an object and helps in disambiguating different

instances of objects that belong to the same class. An example of a program for

“watch tv” would be:

step1 = [Walk] hTELEVISIONi(1)

step2 = [SwitchOn] hTELEVISIONi(1)

step3 = [Walk] hSOFAi(1)

step4 = [Sit] hSOFAi(1)

step5 = [Watch] hTELEVISIONi(1)

Here, the program defines that the television in steps 1, 2 and 5 refer to the same

object instance. The identifier can represent a counter (as in the example above), or a

particular object instance in the environment. In the first case, the program specifies

that the same object instance should be used for different instructions, whereas in the

second case, the program specifies that only the object with the specified identifier

should be used. We describe in Section 2.4.1 how this matching takes place.

This allows agents to perform actions at different levels of detail. VirtualHome

currently supports 18 unique atomic actions, involving interactions with objects (e.g.

“pick-up apple”), navigation commands (e.g. “run to the kitchen”) or animations (e.g.

stand up). Table 2.2 shows the list of available actions.

40



RGB Instance Seg. Class Seg. Depth

Flow Albedo Illumination Surf. Normals

Camera Views

Image Modalities

Figure 2-3: Different camera views and input modalities supported in VirtualHome.

2.4 Performing activities in VirtualHome

VirtualHome is designed both to support agents interacting with the environment,

allowing to train them to perform tasks, and to generate videos of human activities.

Thus, the simulator relies on two modes of operation, which are used depending on

the use case: an interactive mode, and a video mode.

In the interactive mode, agents can take an action at each step, and receive an

observation in return. Note that multiple agents can take an action at the same

step, in which case, each will receive their own observation. The observations can be

symbolic (e.g. in the form of a scene graph, as described in 2.3.2, depicting the current

state of the environment), include 3D information about the environment and agents’

poses, or be visual. Visual observations can come from multiple cameras, either static

in the scene or attached to the agent, and different modalities, including depth, optical

flow, semantic and instance segmentation, or surface normals. Figure 2-3 shows an
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overview of some of the available camera views and input modalities.

The video mode, is designed to generate a video of one or multiple agents doing a

task in the environment given an activity program, as described in 2.3.3. Here, users

can also specify what cameras and input modalities to record during the activity, but

instead of obtaining an observation at each step, the simulator generates a video of

the full activity, with time-stamps for each step. Thus, we need a way to animate the

programs into motions, in order to generate a temporally consistent video.

2.4.1 Animating Programs in VirtualHome

Every step in a program requires us to animate the corresponding (inter)action in

our virtual environment. We thus need to both, determine which object in the home

(which we refer to as the game object) the step requires as well as properly animating

the action. We now describe this process in more detail.

Animating atomic actions. We animate the actions in Table 2.2. Note that

there is a large variability in how an action is performed depending on to which object

it is applied to (e.g., opening a fridge is different than opening a drawer).

We distinguish between actions that require interacting with objects and actions

that do not. The later ones correspond to locomotion actions (walk and run) and

standup. Locomotion actions are implemented using Unity’s NavMesh framework for

navigation (path planner to avoid obstacles) and standup is implemented through an

animation. For the actions requiring objects, we compute the agent’s target pose

and animate the action using RootMotion FinalIK inverse kinematics package. To

allow for more realistic animations, we annotate typical hand poses for humans when

interacting with objects, shown in Figure 2-4. We further animate certain objects

the agent interacts with, e.g., we shake a coffee maker, animate toast in a toaster,

show a (random) photo on a computer or TV screen, light up a burner on a stove,

and light up the lamps in the room, when these objects are switched on by the agent.

The animation is done by keeping a state over the object, and changing it when the

character’s hand reaches the object.

Executing a Program. To animate a program we need first to create a mapping
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Figure 2-4: Examples of how our hand poses are used while interacting with an object.
We support both left and right for each hand pose.

between the objects in the program and the corresponding instances inside the virtual

simulator, which we will cal game objects. Furthermore, for each step in the program,

we also need to compute the interaction position of the agent with respect to an

object, and any additional information needed to animate the action (e.g., which

hand to use, speed of the action, orientation). As described in Section 2.3.3, the

objects in the program contain identifiers, which may correspond to object counters,

or to a particular object instance. When the identifier corresponds to an instance, we

map the objects that have matching instance identifiers. performing the mapping is

straightforward, since it should have a matching identifier. When it corresponds to

a counter, we need to solve an optimization problem by taking into account all steps

in the program and finding a feasible path. For example, if the program requires the

agent to switch on a computer and type on a keyboard, ideally the agent would type

on the keyboard next to the chosen computer and not navigate to another keyboard

attached to a different computer in possibly a different room. For this, we build a

tree of all possibilities of assigning game objects to objects in the program, along with

all interaction positions and attributes. To traverse the tree of possible states we use

backtracking and stop as soon as a state executing the last step is found. Since the

number of possible object mappings for each step is small, and we can prune the

number of interaction positions to a few, our optimization runs in a few seconds, on

average.

Generating a video. Once the mapping between objects is done and the inter-

action information for each step is computed, we can generate a video of the activity

described in the program. For this, we randomly illuminate the scene to make it
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realistic while ensuring visual diversity and record the activity from different cameras

within the environment. We allow the user to select which camera to record from,

or to let the simulator decide it. In the latter case, we use the static cameras in the

environment and switch the recording camera based on agent’s visibility. In partic-

ular, we randomly select a camera which sees the agent, and keep it until the agent

is visible and within allowed distance. For agent-object interaction we also try to

select a camera and adjust its field of view to enhance the visibility of the interaction.

We further randomize the position, angle and field of view of each camera to ensure

diversity in the generated videos.

2.5 Symbolic Simulator

In some cases, rather than rendering videos or obtaining precise 3D information of

an environment, we may simply be interested in simulating an activity at a high

level, obtaining a symbolic representation of the environment for each action. For

instance, we may be interested in knowing at a high level the effects of a given action,

or obtain a coarse world-model to embed it into a symbolic planner. For this, one

possibility is to use VirtualHome and only obtain symbolic observations for every

action. However, the simulator is still storing and updating 3D information in the

background and therefore using computation and memory that we may not need. For

this, we build VirtualHome-Symbolic a very light-weight simulator in Python that can

be used as a proxy for VirtualHome when we only care about symbolic states.

The simulator represents states as symbolic graphs and consumes actions that

change either the states of nodes (e.g. a fridge becomes closed after executing a

Close action) or edges between nodes (e.g. after grabbing an apple from the table,

an ON edge is removed between the apple and the table, and a HOLDING edge is added

between the apple and the agent). Both the available actions and object states are

a subset of those supported in VirtualHome. More importantly, the format of the

symbolic graphs in this simulator are compatible with those in VirtualHome. This

means that when simulating actions in VirtualHome, we can at any time transfer
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the state and execution into this simulator, run a few actions there and transfer the

execution back into VirtualHome.

We will be using this simulator in Chapters 5, 6, 7 to 1) extend a dataset of

human activities and programs and 2) obtain a world-model that can be consumed

by a symbolic planner, which will be driving agents in the environment.

2.6 Discussion

In this chapter, we introduced VirtualHome, a household activity simulator to test

and develop assistive agents safely and at scale, before deploying them in the real

world. VirtualHome focuses on representing both interactive environments, allowing

agents to learn to interact with objects and perform complex tasks, and humans,

which allows to test these agents in more realistic assistive scenarios. The simulator

can be used both to train and test interactive agents, as well as to generate videos

depicting human activities with labels, providing a source to train models for activity

understanding. These features will allow us to build agents that can perform complex

activities given demonstrations, and infer human goals form observing their actions

in the environment, as we will discuss in the following chapters. Furthermore, the

versatility of the simulator has also allowed different communities to use Virtual-

Home for a variety of purposes, including language-based planning via large language

models [81, 60, 136], scene and object reasoning [17, 102] or smart-home research [19].

While VirtualHome allows to represent and learn a variety of household tasks and

behaviors, we still need to define which behaviors we need to focus on in order to

build useful assistive agents. Thus, in Chapter 3 we describe our efforts to build

a knowledge base of activities that can be represented in the simulator, along with

natural language descriptions of these activities, allowing to drive agents, not by a

sequence of program commands but via language instructions.
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Chapter 3

A Knowledge Base of Household

Activities

3.1 Introduction

The ability to simulate household activities in a virtual environment allows us to

quickly generate demonstrations of tasks that agents can learn from, as well as en-

suring that these agents can learn to interact in the environment in a safe and scal-

able manner before deploying them into the real world. In the previous chapter, we

introduced VirtualHome, a platform to simulate these activities in realistic indoor

environments. However, for it to be a useful tool to build assistive agents, we need

information about which types of activities need to be represented, and how these

activities should be performed.

We aim to build agents that help humans in performing everyday activities. For

this, we want agents that can follow human commands, allowing them to perform the

task a person may desire. Tasks here are represented as programs, but asking humans

to instruct agents through those would require to learn a domain-specific syntax and

be time consuming. Instead, we want to teach tasks to agents just like we would teach

a human, through a description of the task or a demonstration of how to perform it.

Our goal is thus to be able to automatically be able to generate activity programs

from natural language descriptions, as well as from video demonstrations, potentially
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allowing naive users to teach their robot a wide variety of novel tasks.

Towards this goal, one important missing piece is the lack of a database describ-

ing everyday activities, paired with programs specifying each of the steps needed to

complete them. Such programs can then be used to instruct a robot or an agent on

how to perform the activity or be rendered in the simulator, allowing to generate

demonstrations for each task.

For this, we aim to build a large repository of common activities and tasks that

we perform in our households in our daily lives. To ensure we can collect a large and

diverse dataset, we will crowd-source the knowledge base. We first collect common-

sense information about typical activities that happen in people’s homes, such as

“watching TV" or “make coffee with milk’, along with a description of the task,

forming the natural language know-how of how these activities are performed. Then,

we ask people to write programs that formalize each activity as described in the

knowledge base, as defined in section 2.3.3. Note that these programs include all the

steps required for the robot to accomplish a task, even those that are not mentioned

in the language descriptions and that humans would assume common-sense.

This chapter describes our efforts to build such knowledge base, providing Activ-

ityPrograms, a dataset to teach agents how to perform everyday activities.

3.2 Related work

Activity datasets for robots and agents. A common way to teach robots or

agents complex tasks is to train them via expert demonstrations [9, 115]. While these

demonstrations typically require expert policies or access to the robot’s or agent’s

state, some works learn behaviors from videos of human demonstrations [112, 122,

125, 167], which are easier to collect. However, most of these works focus on navigation

or low-level manipulation tasks, and not the long term interactions needed to perform

household activities.

A few works have focused on learning more complex activities from demonstrations

by representing them as programs. In [165], they teach robots to cook recipes from
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cooking videos by detecting objects and actions, and using a probabilistic grammar

to generate an action plan. [123, 4] also argued for actions as a sequence of atomic

steps. They aligned YouTube how-to videos with their narrations in order to parse

videos into such programs. Most of these works were limited to either a small set

of activities, or to a narrow domain (cooking). We go beyond this by creating a

knowledge base about an exhaustive set of activities and tasks that people do in their

homes.

Some works [134, 132, 41] have focused on building datasets of human activities at

home, that can be used to teach robots household tasks. [134] crowd-sourced scripts

of people’s actions at home in the form of natural language. These were mostly

comprised of one or two sentences describing a short sequence of actions. While this

is valuable information, language is very versatile and thus hard to convert into a

usable program on a robot. We show how to do this in our work.

Despite the potential of activity datasets to learn complex robot or agent behav-

iors, these require grounding videos into agent actions and the environments where

they will interact, which is a complex task. For this reason, building activity datasets

that are grounded in an environment has been a promising direction to develop agents

that can perform complex tasks. A number of works, concurrent with the develop-

ment of this thesis, have made significant progress towards this goal [139, 127, 14, 157],

building upon expert policies or data collection in VR. Like in our work, [127] uses

human annotators to describe household activities via language, but generates ac-

tions of a given activity using a built-in planner, which does not necessarily represent

human behavior. [139] uses a block-like programming language similar to ours to

define activity pre and post-conditions, and collect a dataset of human performing

those activities in VR.

3.3 Data Collection

In order to collect a diverse set of activities, we use crowd-sourcing to build our

Knowledge Base. Describing activities as programs is not a trivial task, and using
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crowd-sourcing makes it more challenging, as most annotators have no programming

experience. We address this by splitting the data collection into two parts.

In the first part, we asked Amazon Mechanical Turk (AMT) workers to provide

verbal descriptions of daily household activities. In particular, each worker was asked

to come up with a common activity/task, give it a high level name, eg “make coffee”,

and describe it in detail. In order to cover a wide spectrum of activities we pre-

specified in which scene the activity should start. Scenes were selected randomly from

a list of 8 scenes (living room, kitchen, dining room, bedroom, kids bedroom, bathroom,

entrance hall, and home office). An example of a described activity is shown in

Figure 3-3. Note that these descriptions are written as if the activity was being

described to another human. Because of this, they may likely omit some necessary

steps that are commonsense, for example, opening a fridge before grabbing something

from it and closing the fridge afterwards.

In the second stage, we showed the collected descriptions to the AMT workers and

asked them to translate these descriptions into programs, telling them to produce a

program that would “drive” a robot to successfully accomplish the described activ-

ity, without missing any step. We designed a programming language to represent

each description, together with an interface so that annotators with no programming

experience could write them. Our interface builds on top of Scratch [1], a visual

programming language developed by the Lifelong Kindergarten Group at MIT Media

Lab aimed at introducing young children into programming. In Scratch, people write

programs by stacking blocks of instructions as if they were Lego pieces, allowing to

create interactive stories, games or animations. We designed our language so that

each activity program could also be written by composing blocks representing simple

actions or interactions, such as sit, walk, grab or open.

Each block contains the name of an action and a list of arguments to be filled with

objects. Actions like stand up would not need any argument whereas put something

into something would require two arguments to be filled with objects. Each object

is linked to an instance number so that the programs are not ambiguous when they

refer to multiple objects belonging the same class: if an activity consists in setting
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Figure 3-1: Example block to construct activity programs.

Figure 3-2: Example program for watch tv.

a table for two people, this allowed to disambiguate which plate should be used at

every instruction. An example block can be seen in figure 3-1.

The blocks allow to select from a predefined list of 77 actions and 312 objects,

compiled by analyzing the frequency of verbs and objects in the collected descriptions.

We manually added affordance constraints to the objects, so that it is not possible

to create invalid action/object combinations such as grab shower. We also allowed

annotators to use a “special” block” which allowed to introduce missing actions as

free-form text. These blocks were later discarded or replaced, but they allowed to

identify blocks that needed to be added into the interface. Figure 3-2 shows an

example of a program collected for “watch tv”, where the instance number indicates

that the television always refers to the same object instance.

Annotators were firstly shown a set of activities and descriptions to annotate,

then they were asked to select, for each of them, the rooms and objects needed to

perform the activity, and they finally created a program by using those items. Figure

3-3 shows the annotation interface.

We started annotating a small set of programs using Upwork crowd-sourcing plat-

form, which allows to hire freelancers to perform jobs. While this approach was more

expensive and slow than using AMT, it allowed to obtain very high quality pro-

grams, as well as feedback on how to improve the interface for easier crowd-sourcing.

We later asked annotators on AMT to write programs for our collected descriptions,
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Figure 3-3: Interface for annotating programs from descriptions. Annotators would
first read the description of the activity (step 2). They would set the scene (3) by
adding the necessary objects and rooms and they would finally write a program by
composing blocks (4).
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which were finally validated by the annotators in Upwork. We found that annotators

on AMT were capable to quickly learn to produce programs by providing a carefully

designed tutorial, costing 15 cents per program annotated.

3.4 Dataset Analysis

In the first part we collected 1814 descriptions. From those, we were able to collect

programs for 1703 descriptions. Some of the programs contained several “special

blocks” for missing actions, which we remove, resulting in 1257 programs. We finally

selected a subset of the tasks and asked workers to write programs for them, obtaining

1564 additional programs. The resulting 2821 programs form our ActivityPrograms

dataset. On average, the collected descriptions have 3.2 sentences and 21.9 words,

and the resulting programs have 11.6 steps on average.

The dataset covers 75 atomic actions and 308 objects, making 2709 unique steps.

Figure 3-4.a shows a histogram of the 50 most common actions appearing in the

dataset, and, Figure 3-4.b, the 50 most common objects.

The programs in the dataset represent 576 activities, each with several examples,

and we analyze their diversity by comparing their programs. Table 3.1 analyzes 4

selected activities. We compute their similarities as the average length of the longest

common subsequence computed between all pairs of programs within the activity.

Figure 3-5 shows some example programs for the activities “Make coffee” and “Read

a book”.

We can also measure the similarity between activities by measuring the distance

between programs. The similarity between two programs is measured as the length

of their longest common subsequence of instructions divided by the length of the

longest program. We can measure the similarity between 2 activities by taking the

average similarity across programs belonging to the 2 activities. Table 3-6. shows

the similarity matrix (sorted to better show the block diagonal structure) between

different activities in our dataset. As it can be seen, the similarity measure allows to

cluster semantically similar activities.
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Figure 3-4: Histogram of the most common actions (a) and objects (b) in Activi-
tyPrograms.

Action # Prog. LCS Norm. LCS
Make coffee 69 4.56 0.26
Fold laundry 11 1.29 0.08
Watch TV 128 3.65 0.40

Clean 42 0.76 0.04

Table 3.1: Analyzing diversity in the same activity by computing similarities across
all pairs of the collected programs. “LCS” denotes longest common subsequence. For
“norm.LCS” we normalize the LCS by the length of the longest of the two programs.

The collected programs also provide a source of commonsense knowledge. By

looking at the instructions, one can infer information such as the relative location of

objects (e.g. the nightstand is near the bed, Figure 3-5), or the affordance of certain

obejcts (e.g. spectacles are used to read, Figure 3-5)

3.4.1 Completeness of programs

We analyze the correctness and completeness of the collected programs to execute

the task they describe. To do so, we sample 100 of the collected programs, and ask 5

workers on AMT to rate each of the programs on whether they are complete, missing

minor steps or missing important steps. A program is complete when it contains

all the actions so that a robot could execute them, misses minor steps when the

program says “sit on the sofa” but there is no previous instruction to “walk towards

the sofa” and misses crucial steps when it lacks an action that is crucial to complete

the activity, for example “switch on TV” in order to watch TV, or pour water into a

cup if one needs to drink water. For each of the programs, we take the median score
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Figure 3-5: Examples of programs for the activities Make a coffee and Read a book.

from the 5 workers as a measure of the quality of that program. Results show that

64% of the programs are complete, 28% are missing minor steps and 8% are missing

crucial steps. Note that many of the minor steps can be automatically corrected by,

for example, adding walking actions before interacting with objects.

3.5 Discussion

This chapter presented our approach to build a knowledge base of household activi-

ties represented both via natural language descriptions and step-by-step instructions.

Having access to a dataset of activity programs is highly valuable, since it provides a

guide for agents to perform actions in the environment to achieve complex tasks. At

the same time, having natural language descriptions of the tasks makes the dataset

more easily readable for humans, but more importantly it provides a way to train mod-

els that can go from these descriptions to the activity programs, effectively allowing

us to instruct robots via language. We discuss in Chapters 4 and 5 two approaches

to do that.

Despite the value of building such knowledge base, our current approach also comes

with limitations. First, the knowledge base is not grounded in any environment. The

descriptions and programs are collected according to how the annotators think a given

task would normally be done, and therefore assuming a common configuration of the

environment. For instance, a program with the instructions “walk to livingroom",

“turn on tv"", “watch tv" assume that there is a turned off tv inside the livingroom

in the environment. If this was not the case, the program could not be executed
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Figure 3-6: ActivityPrograms similarity matrix (sorted to better show the block di-
agonal structure) between different activities in our dataset.

and the task would fail. Programs should therefore include a series of assumptions

of the environment. Second, while our programs specify all the required steps to

perform an activity, there may be multiple valid ways to perform it, and it would

be impossible to author a new program for each of these possibilities. Moreover, our

program representations allow agents to execute tasks in an open-loop, but these tasks

may fail if any of the individual instructions fails, or if the environment changes while

the agent is performing the task. Representing programs as sequences of instructions

makes them easier to collect and learn, but addressing the above issues would require

more flexible representations or primitives, such as adding action preconditions or
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describing tasks via goal specifications. We adopt the latter approach in chapters 6

and 7.
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Part II

Agents that follow human

instructions

58



In Part I, we proposed a platform for agents to learn to interact in household

environments and perform daily activities in a safe and scalable manner before being

deployed in the real world. Our next goal is to allow humans to command these agents

to perform everyday tasks in our environment. While agents represent activities as

programs, asking humans to use this representation would require them to learn a

domain-specific syntax and specify all the steps involved in a given task, making the

process time consuming and prone to errors. Instead, we want to be able to commu-

nicate tasks the same way we would instruct other humans, through a description or

demonstration of an activity.

In this part, we present agents that can perform daily activities given this type

of human input. We first describe, in Chapter 4 a model that translates language

or videos into instructions that can be executed in VirtualHome, using the datasets

described in Part I. In Chapter 5, we extend these agents to reason about the envi-

ronment where they will perform the instructed activities, allowing them to adapt to

situations that may not be explicitly instructed by humans.
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Chapter 4

Agents that follow instructions and

demonstrations

4.1 Introduction

For assistive agents to be helpful, we should be able to easily instruct them to perform

the activities we need help with. In this thesis, we study agents that operate in a

virtual environment, so our goal is to provide methods so that humans can command

agents in VirtualHome. The programs and instructions presented in Part I allow

agents to perform actions in our simulator, but it would require humans to learn a

domain-specific syntax and rules to command them. Instead, we want agents that

can be instructed just like we would teach other people to do everyday tasks, by

providing a description or demonstration of the activity.

Given that we want the instructed agents to perform the activities in Virtual-

Home, we propose the following task: to generate an activity program, as described

in Section 2.3.3, from either a natural language description or a video demonstration.

We will be using the work described in Part I to achieve this task. The knowledge

base described in Chapter 3, with activity descriptions paired with programs, will

serve as a dataset to train a model that translates natural language descriptions into

activity programs. These programs can also be executed and rendered in the sim-

ulator, allowing us to generate datasets of activity videos, with which we can train
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Robots 
Ac#on:					Work	on	computer	
Descrip#on:		Turn	on	your	computer	and	
sit	in	front	of	it.	Type	on	the	keyboard,	
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Ac#on:					Make	coffee	
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it’s	done	and	pour	the	coffee	into	a	cup.	

Ac#on:					Read	a	book	
Descrip#on:		Sit	down	in	recliner.	Pick	up	
a	novel	off	of	coffee	table.	Open	novel	to	
last	read	page.	Read.	

VirtualHome 
robot playground 

pr
og
ra
m
	

vi
de

o	
Knowledge Base of Household Tasks 

Figure 4-1: We first crowdsource a large knowledge base of household tasks, (top).
Each task has a high level name, and a natural language instruction. We then col-
lect “programs” for these tasks, (middle left), where the annotators “translate” the
instruction into simple code. These programs can be executed and rendered in our
simulator, allowing to generate video demonstrations of the activities in our knowl-
edge base (bottom). The videos and descriptions, paired with programs, can serve as
a training dataset, allowing to generate programs from human instructions or demon-
strations (blue and orange arrows). These programs can be further executed in
tested in the simulator.

models that generate programs from video demonstrations. Finally, the programs

predicted by our model can be executed again in the simulator, allowing to test the

agent abilities to perform the instructed tasks. Figure 4-1 shows an overview of this

pipeline.

In this chapter, we introduce a model to translate task descriptions or demon-

strations into activity programs. We leverage the ActivityPrograms dataset and a

procedurally generated dataset, which we call SyntheticPrograms to train the model.

Finally, we analyze the generated programs when executed in new environments in

VirtualHome.
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4.2 Related Work

Language-driven agents: There has been an increasing interest in building language-

driven agents, many of the efforts presenter here have been posterior to our work. A

number of works have leveraged language to build instruction-following agents that

could perform manipulation [88] or navigation [89, 155, 141, 140]. Similar to our

goal, to new simulators and datasets has spun work to build agents that could per-

form high-level activities [127]. Most related to our work, [81, 60] use pretrained large

language models to drive agents to do tasks in VirtualHome. In [81], authors fine-tune

a language model on programs generated procedurally via a planning-based agent,

whereas [60] uses a frozen language model with few-shot prompting from the Activ-

ityPrograms dataset (Chapter 3). Since activities in VirtualHome contain common-

sense information, large scale natural language datasets provide a useful source of

information for agents to perform these tasks, even if the syntax differs from the

programs in VirtualHome.

Learning from videos: Video demonstrations have also been a source to teach

agents or robots to perform different kinds of tasks such as object manipulation [98,

40, 33, 124] or imitating human or animal motions [108, 107], However, in many

cases they focus on low-level tasks. In [165], the authors detect objects and actions

in cooking videos and generate an “action plan” using a probabilistic grammar that

can drive robots to perform complex tasks, and [169] uses YouTube cooking videos

to learn higher-level collaborative plans. In our work we study high-level tasks in a

wider range of domains within the household.

Code synthesis: Given that we represent activities via programs, our task here

can be seen as that of language-driven program synthesis, where the goal is to gen-

erate code that solves a problem from a natural language specification. Program

synthesis has been a long studied research topic [50, 91, 138], where the emergence

of deep learning has allowed to make significant progress. Following the development

of large language models [21], recent works have achieved great success in program

generation [82, 30, 10], reaching human performance. Previous work [66, 92] has also
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generated code to answer visual questions about images. Our work differs in the

domain, and works with text or video as input.

4.3 Method

We aim to generate a program for the activity from either a natural language descrip-

tion or from a video demonstration. Note that once a script is generated, an agent

could perform the task it describes in a different environment, using new 3D models

and planning paths.

We aim to generate programs that are 1) consistent with the input description

or video and 2) executable in VirtualHome, avoiding actions such as standing up

before having sit or closing a fridge that is already closed. A script fulfills the second

criteria when it is fully executable in the environment. We measure the first criteria by

calculating the normalized longest common subsequence (LCS) with the ground-truth

script
|LCS(Proggt, P rogpred)|

max(|Proggt|, |Progpred|)
(4.1)

We simplify our programs and remove the instance number for the task of prediction,

our scripts are now a sequence of steps of the form:

stept = [actiont] < objectt,1 > ... < objectt,n > (4.2)

Where n can be 0, 1 or 2 depending on the action. The LCS serves as a measure similar

to the intersection over union (IOU): the ground-truth and predicted programs can

have gaps between the matching steps, but the order of these steps should be correct.

We treat the task of transcribing an input (description or video) into a program

as a translation problem. We adapt the seq2seq model [144] for our task, and train

it with Reinforcement Learning to optimize the two objectives.

Our model consists of an RNN encoder that encodes the input sequence into a

hidden vector representation, and another RNN acting as a decoder, generating one

step of the program at a time. We use the same architecture for both description and
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Figure 4-2: Our encoder-decoder LSTM for generating programs from natural lan-
guage descriptions or videos.

video and assume the input has been transformed to a sequence of vector embeddings.

We use a LSTM with 100-dim hidden states as our encoder. At each step t, our RNN

decoder decodes a step which takes the form of 4.2. Let xt denote an input vector to

our RNN decoder at step t, and let h
t be the hidden state. Here, ht is computed as

in the standard LSTM using tanh as the non-linearity. Let ai be a one-hot encoding

of an action i, and oi a one-hot encoding of an object. We compute the probability

p
t

i
of an instruction i at step t as:

ãi = Waai, õi,n = Wooi,n, vi = mean(ãi, õi,1, ..., õi,n)

p
t

i
= softmaxi(

vi

kvik

T

· Wv(h
t
kxatt

t
)) (4.3)

where Wa and Wo and Wv are learnable matrices, and vi denotes an embedding

of an instruction.

The input vector xt concatenates multiple features. In particular, we use the

embedding v of the step with the highest probability from the previous time instance

of the decoder. Following [144], we further use the attention mechanism over the

encoder’s states to get another feature xatt

t
. In particular:

↵
t

j
= softmaxj(v

T
�
Watt (h

t
kh

j

enc
)
��

(4.4)

xatt

t
=

X

j

↵
t

j
h
j

enc
(4.5)

where Watt, v are learnable parameters. An overview of the model can be seen in

Figure 4-2.
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4.3.1 Learning and inference

. Our goal is to generate programs that are both close to the ground-truth programs

in terms of their LCS (eq. 4.1) and are also executable by our renderer. To that end,

we train our model in two phases. Firstly, we pre-train the model using cross-entropy

loss at each time step of the RNN decoder. We follow the typical training strategy

where we make a prediction at each time instance but feed in the ground-truth step

to the next time instance. We use the word2vec [95] embeddings for matrices Wa and

Wo and fix their weights.

In the second stage, we treat program generation as an Reinforcement Learning

problem, where the agent is learning a policy that generates steps to compose a

program. We follow [116], and use policy gradient optimization to train the model,

using the greedy policy as the baseline estimator. In particular, given the policy

p✓ defined in eq.4.3, we define the sequence generated by the greedy policy as ŵ =

{ŵ1, ..., ŵT} with:

ŵt = argmax
wt

p✓(w
t
) (4.6)

And the sequence w
s generated by sampling from the policy p✓. Our reward

becomes r(w
s
, g) � r(ŵ, g). Given that the baseline r(ŵ, g) does not depend on the

sampled w
s, we have that

Ews⇠p✓
[r(ŵ, g)r✓ log p✓(w

s
)] = r(ŵ, g)

X

ws

r✓p✓(w
s
) = r(ŵ, g)r✓

X

ws

p✓(w
s
) = 0

(4.7)

And therefore

�Ews⇠p✓
[(r(w

s
, g)� r(ŵ, g))r✓ log p✓(w

s
)] = �Ews⇠p✓

[(r(w
s
, g)r✓ log p✓(w

s
)] (4.8)

Which corresponds to the expected gradient of the loss using REINFORCE [158]. This

means that using the baseline will not affect the expected gradient, while allowing to

reduce its variance.
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We exploit two different kinds of rewards r(w
s
, g) for RL training, where w

s de-

notes the sampled program, and g the ground-truth program. To ensure that the

generated program is semantically correct (follows the description/video), we use the

normalized LCS metric (eq. 4.1) as our first reward rLCS(w
s
, g). The second reward

comes from our simulator, and measures whether the generated program is executable

or not. This reward, rsim(ws
), is a simple binary value. We start by training using the

LCS reward alone, and fine-tune the best model using a balance of the two rewards,

as r(w
s
, g) = rLCS(w

s
, g) + 0.1 · rsim(w

s
).

So far we did not describe the input to the RNN encoder. Our model accepts

either a language description or a video depicting the action, which are converted

into a sequence of vector embeddings to serve as input to the encoder shown in

Figure 4-2. We explain in the following sections how the embeddings are obtained for

each modality.

4.3.2 Textual Description

To encode a textual description, we split the description by its words, remove punc-

tuation symbols and use word2vec [95] embedding trained on GoogleNews to encode

each word.

4.3.3 Video

To generate programs from videos, we partition each video into 2-second clips, corre-

sponding to 9 frames and encode each of the clips as the embedding of the instruction

happening at the middle frame. These embeddings serve as input to our RNN en-

coder. Notice that, some actions (e.g. walk) take longer than others (e.g. switch on).

In order to avoid having an imbalance in the number of clips for the long actions, we

allow a maximum of 5 clips for every step in the video.

To obtain the embedding of each clip, we use the Temporal Relation Network [173]

with 4-frame relations to predict the embedding of an instruction (action+object+object).

Given, the embedding, we obtain the probability of every instruction through eq. 4.2
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Dataset # prog. avg # steps avg # sent. avg # words
ActivityPrograms 2821 11.6 3.2 21.9
SyntheticPrograms 5193 9.6 3.4 20.5

Table 4.1: We analyze programs and natural language descriptions for both real
activities in ActivityPrograms and SyntheticPrograms (2) with procedural programs
but real descriptions.

and train the network using cross-entropy loss.

We still have to specify what is the input of the TRN model. In order to make

the model potentially generalizable to real videos, we use the semantic segmentation

mask, which we obtain by training a DilatedNet [168] segmentation network using

the ground-truth segmentations.

4.4 Dataset

The VirtualHome ActivityPrograms Dataset, introduced in Chapter 3, contains ac-

tivity programs paired with natural language descriptions, allowing us to train the

text-based program generation model. In order to train the video-based model, we

need videos paired with programs, which we can generate through the simulator.

Since the programs here represent real activities that happen in households, they

contain significant variability in actions and objects that appear in steps. While our

ultimate aim is to be able to animate all these actions in our simulator, the simulator

only supports the 14 most common actions appearing in the dataset1. Therefore, we

create another dataset, which we call SyntheticPrograms, with programs containing

only these actions in their steps. The creation of this dataset is explained below.

We synthesized 5,193 programs using a simple probabilistic grammar encoding

activities with actions supported by VirtualHome, such as watch TV, work on com-

puter or moving objects. For each program, we asked a human annotator to describe

it in natural language. Although these programs were not given by annotators, they

produced reasonable activities, creating a much larger dataset of paired descriptions-

1
The actions supported by the simulator are listed in Table 2.2. From those, the actions Walk

Towards, Walk Forward, Turn Left, Turn Right do not appear in the ActivityPrograms dataset.
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RGB pose class seg. inst. seg depth flow

Figure 4-3: A sample of the VirtualHome SyntheticPrograms Dataset. The
program is generating using a probabilistic grammar, and described by a human
annotator in natural language (top row). Then, it is animated in VirtualHome by
randomizing the selection of homes, agents, cameras, as well as the placement of a
subset of the objects, the initial location of the agent, the speed of the actions, and
choice of objects for interactions. Videos have ground-truth: (second row) time-
stamp for each atomic action, (bottom) 2D and 3D pose, class and object instance
segmentation, depth and optical flow.

programs at a fraction of the cost. The dataset statistic are shown in Table 4.1,

together with the ActivityPrograms Dataset, for comparison. Note the similarity in

both datasets, both in number of instructions and length of the natural language

descriptions.

To generate the activity videos, we execute each of the programs in video mode,

as described in Section 2.4.1. First, we select an agent and an apartment to perform

the activity. We use apartments 1-4 (see Figure 2-2) for videos in the training set,

apartment 5 for the validation set, and apartments 1-6 testing our video-to-script

model. We then populate the apartment with objects, so that the program can be

executed. Then, we place 6-9 static cameras in each room, 26 per home on average,

allowing a third person view of the action. During recording, we switch between

cameras based on agent’s visibility. The resulting dataset contains synthetic activity

programs paired with human descriptions and videos with time-stamps of the atomic

actions, and different visual modalities. Figure 4-3 shows a sample of the dataset.
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4.5 Experiments

In our experiments we exploit both of our datasets: ActivityPrograms containing

descriptions and programs for real activities, and SyntheticPrograms dataset that

contains synthesized programs, yet natural descriptions to describe them. Synthet-

icPrograms dataset further contains videos animating the programs.

4.5.1 Instruction Classification from Video

We first evaluate our model for the task of video-based action and action-object-

subject (step in the program) classification. Here, we partition each video in 2-sec

clips, and use the clip-based TRN on the predicted segmentation mask to perform

classification. We compute performance as the mean per-class accuracy across all

2-sec clips in test. We consider accuracy at the level of action, object, or the whole

instruction. To better understand the generalization properties of the video-based

models, we further divide the test set into videos recorded in homes seen at train

time, and videos in homes not seen at train time. We report the results in Table 4.2.

To set the lower bound, we also report a simple random retrieval baseline, in which

a program is randomly retrieved from the training set. In Figure 4-4 we show the

confusion matrix for action classification. Notice that the model is biased towards

the walk action but that is also the most common action in the programs, and we

empirically found out that this setting provided better script generation results. The

model struggles to differentiate between switch on and switch off, which makes sense

given that this information is generally not encoded in the semantic segmentation.

We can also see that the model mistakes Watch with sit/stand up, which is due to the

fact that the video is clipped without taking into account action boundaries. Given

that watch is normally preceded by a sitting action (e.g. for watch tv) followed by

standing up, it is likely that some shots fall in the intersection between these actions.
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Figure 4-4: Confusion matrix for action classification in 2-sec clips.

Action Objects Steps Mean
Rand. Retrieval 8.30% 1.50% 0.51% 3.43%
Seen homes 70.32 % 42.14 % 23.81 % 45.42%
Unseen homes 31.34% 14.55% 11.48% 19.12%
All 46.85% 25.76% 18.41% 30.34%

Table 4.2: Accuracy of video-based action classification and action-subject-object (step
in the program) prediction in 2-sec clips from our VirtualHome Activity dataset.

Effect of input

We also study the effect of using ground-truth segmentation or RGB images in the

clip classification task. The results are shown in table 4.3. As it can be seen, there is

a significant performance drop from ground-truth segmentation to the predicted one,

which suggests that more effort should be put in training the segmentation. Many of

the interactions in VirtualHome are done with small objects, with which segmentation

networks typically struggle with. The model using RGB images performs better than

the one using the predicted segmentations, but drops significantly in performance

when testing on apartments unseen during training, which suggests it would not

fit for transferring to unseen environments. Given that our future goal is to have

this models working on real environments, we resort to using semantic segmentation

information for our video-based prediction task.
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Action Objects Steps Mean
Seen homes 78.06 % 73.00 % 56.42 % 69.16%
Unseen homes 54.89% 52.94% 43.50% 50.44%
All 62.58% 61.18% 48.49% 57.42%

(a)

Action Objects Steps Mean
77.46 % 60.21 % 44.45 % 60.71%
40.56% 26.56% 26.46% 31.19%
54.60% 40.44% 35.17% 43.40%

(b)

Table 4.3: Accuracy of video-based action classification and action-subject-object (step
in the program) prediction in 2-sec clips using ground-truth segmentation (a) and
RGB images (b).

4.5.2 Program Generation

We now evaluate the task of program generation. We evaluate program induction

using the normalized LCS, as described in eq. 4.1. We also compute accuracies for

actions and objects alone. Since LCS does not measure whether the program is valid,

we report another metric that computes the percentage of generated programs that

are executable in our simulator.

Language-based prediction

Since we have descriptions for all activities, we first evaluate how well our model

translates natural language descriptions into programs. We report results on Activi-

tyPrograms (real activities), as well as on VirtualHome Activity datasets (where we

first only consider descriptions, not videos). We compare our models to four base-

lines: 1) random sampling, where we randomly pick both an action for each step

and its arguments, 2) random retrieval, where we randomly pick a program from the

training set, 3) skipthoughts, where we embed the description using [72, 176], retrieve

the closest description from training set and take its program, 4) our model trained

with MLE (no RL). Table 4.5 and 4.4 shows the results. Note that the retrieval base-

lines (skipthoughts and random retrieval) are always executable, since our training set

scripts were generated to be executable. We can see that our model outperforms all

baselines on both datasets. Our RL model that exploits LCS outperforms the MLE

model on both metrics (LCS and executability). Our model that uses both rewards

slightly decreases the LCS score, but significantly improves the executability met-

rics. Figure 4-5 shows some example results for ActivityPrograms, trained using the
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Method Action Objects Steps Mean Simulator (%)
Rand. Sampling .226 .039 .020 .095 0.6%
Rand. Retrieval .473 .079 .071 .207 100.0%
Skipthoughts .642 .272 .252 .389 100.0%
MLE .777 .723 .686 .729 38.6%
PG(LCS) .803 .766 .732 .767 35.5%
PG(LCS+Sim) .806 .775 .740 .774 39.8%

Table 4.4: Programs from description: Accuracy on SyntheticPrograms. We evaluate
using the normalized longest common subsequence, mimicking IoU for programs, as
well as the percentage of scripts executable in the simulator.

Method Action Objects Steps Mean
Rand. Sampling .106 .018 .004 .043
Rand. Retrieval .320 .037 .032 .130
Skipthoughts .469 .297 .266 .344
MLE .497 .392 .340 .410
PG(LCS) .522 .433 .387 .447

Table 4.5: Programs from description: Accuracy on ActivityPrograms. Since real
programs are mostly not executable in our simulator due to the lack of implemented
actions, we cannot report the executability metric or use it as a reward.

LCS reward and Figure4-6 shows results on SyntheticPrograms, trained using both

rewards.

Video-based prediction

We also report results on the most challenging task of video-based program generation.

The results are shown in Table 4.6. One can observe that RL training with LCS reward

improves the overall accuracy over the MLE model (the generated programs are more

meaningful given the description/video), however its executability score decreases.

This is expected: MLE model typically generates shorter programs, which are thus

more likely to be executable (an empty program is always executable). A careful

balance of both metrics is necessary. RL with both the LCS and the simulator reward

improves both LCS and the executability metrics over the LCS-only model. Figure 4-

7 shows example results for script generation from video on SyntheticPrograms test

set.
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Description: Walk to kitchen. Open fridge. Put groceries in fridge.

Groundtruth Predicted

Description: Listen to music

Groundtruth PredictedGroundtruth

Description: I walk to the bedroom and turn off the lights. I lie in 
bed, cover myself with the sheets, shut my eyes and sleep.

NormLCS: 0.375

NormLCS: 0.857

NormLCS: 0.090

Description: I	sit	at	my	computer	desk	and	open	the	browser.

Groundtruth Predicted
NormLCS: 0.714

Predicted

Figure 4-5: Example results for language-based prediction on ActivityPrograms
dataset.

Predicted

Predicted

Description: Check	 the	time,	then	put	glasses	on	the	coffee	table,	and	
check	the	stove.

Groundtruth Predicted

Description: Use	the	aftershave.	Turn	on	the	light	and	find	the	diary.	
Put	it	on	the	couch	before	 you	turn	off	the	light.

GroundtruthGroundtruth

Description: Put	the	plate	on	the	counter	and	then	put	the	printing	
paper	on	the	desk.

NormLCS: 0.727

NormLCS: 1.000

NormLCS: 0.400

Description: Take	the	bowl	to	the	coffee	table.	Turn	the	toaster	on.	
Take	the	bowl	to	the	table.	Turn	the	toaster	off.

Groundtruth
NormLCS: 0.833

Predicted

Figure 4-6: Example results for language-based prediction on SyntheticPrograms
dataset.
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Description: Grab	some	food	 to	cook	on	 the	stove.	Take	a	seat	on	the	sofa	while	the	food	is	cooking.	Get	up	off	the	sofa	and	check	on	the	food.

Groundtruth PredictedNormLCS: 0.833

Description: Grab	some	coffee	 place	the	pot	on	the	counter.	Head	to	the	living	room	sit	on	the	couch	and	watch	television.

Groundtruth PredictedNormLCS: 0.600

Description: Grab	some	coffee	 place	the	pot	on	the	counter.	Head	to	the	living	room	sit	on	the	couch	and	watch	television.

Groundtruth PredictedNormLCS: 0.444

Figure 4-7: Example results for video-based prediction on SyntheticPrograms dataset.
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Action Objects Steps Mean Simulator
Rand. Retrieval .473 .079 .071 .207 100.0%
MLE .735 .359 .341 .478 19.4%
PG(LCS) .761 .383 .364 .502 19.0%
PG(LCS+Sim) .751 .377 .358 .495 22.4%
PG(LCS+Sim) Seen homes .851 .556 .528 .645 24.6%
PG(LCS+Sim) Unseen homes .680 .250 .236 .389 20.9%

Table 4.6: Video-based program generation.

Executing programs in VirtualHome

. Given that we are optimizing our programs to be executable in VirtualHome, we

can try running the script predictions to generate new videos. In Figure 4-8 we show

a few examples of our agent executing programs generated from natural descriptions.

To understand the quality of our simulator as well as the plausibility of our program

evaluation metrics, we perform a human study. We randomly selected 10 examples per

level of performance: (a) [0.95�1], (b) [0.8�0.95], (c) [0.65�0.8], and (d) [0.5�0.65].

For each example we had 5 AMT workers judge the quality of the performed activity

in our simulator, given its language description. Results are shown in Figure 4-9. One

can notice agreement between our metrics and human scores. Generally, at perfect

performance the simulations got high human scores, however, there are examples

where this was not the case. This may be due to imperfect animation or planning in

our simulator, or the fact that the generated scripts do not have information about

object instances. Future models should be able to incorporate such information in

the generation of scripts.

Implications

The high performance of text-based activity animation opens exciting possibilities for

the future. It would allow us to replace the more rigid program synthesis that we

used to create our dataset, by having annotators create these animations directly via

natural language. Similarly, the text-based program generation could allow to reduce

human annotation by crowd-sourcing scripts for activities from existing text corpora.

We leave this as an avenue for future work.
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[Grab] ⟨CUP⟩ [Open] ⟨Fridge⟩[Walk] [Grab] ⟨Milk⟩

Description: Get an empty glass. Take mil from refrigerator and open it. Pour mil into  glass.

Description: Go watch TV on the couch. Turn the TV off and grab the coffee pot. Put the coffee pot on the table and go turn the light on.

Description: Look at the clock then get the magazine ands use the toilet. When done put the magazine on the table.

Description: Take the face soap to the kitchen counter and place it there. Turn toaster on and then switch it off. Place the pot on the stove.

[Sit] ⟨SOFA⟩[SwitchOn] ⟨TV⟩ [Put] ⟨COFFEE POT⟩ ⟨TABLE⟩[SwitchOff] ⟨TV⟩

[Sit] ⟨TOILET⟩[Walk] [Put] ⟨MAGAZINE⟩ ⟨DESK⟩[Walk][Grab] ⟨MAGAZINE⟩

[Put] ⟨FACE SOAP⟩ ⟨COUNTER⟩[Walk] [Put] ⟨POT⟩ ⟨STOVE⟩[Grab] ⟨FACE SOAP⟩ [SwitchOn] ⟨TOASTER⟩

Figure 4-8: Videos generated from descriptions in SyntheticPrograms. We first use
the language-based model to predict programs from the given descriptions. Then, we
execute and render these programs in a new environment.

4.6 Discussion

In Part I of this thesis, we introduced a simulator to represent household activities,

and a knowledge base with activity descriptions and programs, allowing to perform

these activities in the simulator. In this chapter, we closed the loop and proposed

a simple model that infers an activity program from either a video or a textual

description, allowing agents to be ‘’driven" by naive users via natural language or a

video demonstration. We then showed examples of agents performing these programs

in our simulator.

While these efforts bring us closer to the goal of building robots that can assist

humans in household environments, the current approach presents several limitations.

VirtualHome does not provide a perfect representation of a real environment, and

therefore it will be challenging to transfer what is learned in simulation to the real
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[0.95-1.00] [0.80-0.95] [0.65-0.80] [0.50-0.65]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Failed
Marginal
Adequate
Good
Excellent
Perfect

Figure 4-9: Human judgement of videos generated from text descriptions.

world. This thesis focuses on building assistive agents via simulation and leave this for

future work. In this chapter, we assumed that humans just provide task specifications

to the agents, but that they are not present in the environment as these agents

perform the task. This means that the agent only has to focus on interacting in

the environment, without accounting for the fact that there may be other humans

in it. We will be addressing this in Part III. The approach presented in this chapter

allowed us to have a single agent performing instructed tasks in the environment,

but it had an important assumption: that the environment where the agent would

perform the task was consistent with the description of the task to perform, or with

the environment where the human had previously demonstrated the task. When the

agent sees a human going to the cabinet and getting coffee grounds to make a coffee,

it will reproduce the same steps to perform the task. However, if the new environment

has the coffee grounds in the freezer, the agent will still go to the cabinet, failing to

perform the instructed task.

Thus, we aim to build agents that not only follow human instructions, but that

they ground them in the environment where they will perform the task. This will

allow us to build agents that can perform tasks in a wide set of environments and

conditions, even when they differ from the conditions where the task was instructed.

In the next chapter, we present an approach to build such agents.
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Chapter 5

Environment Aware Agents via

Activity Sketches

5.1 Introduction

We want agents to be able to perform everyday tasks such as setting up the table,

preparing coffee, or even sit on the couch and watch TV. An agent should learn

to perform these tasks from high-level descriptions or visual demonstrations. We

presented in Chapter 4 an approach to do that. The challenge here is on how to

generalize the acquired knowledge to new environments. For instance, if we want to

learn to make coffee, an agent could first watch a video of someone making coffee in

order to extract the sequence of steps (program) that need to be executed. However,

when trying to make coffee in an environment that differs from the environment in

which the demonstration took place, the agent has to adjust the program so that

it can be executed. For instance, the agent could find that the coffee machine is

unplugged, or that it is in the living room instead of in the kitchen, or that someone

else is currently using it and the agent needs to wait. Being able to perform these

adjustments requires access to a common-sense knowledge database that allows the

agent to decide which steps in the demonstration are essential in the task definition,

and how the program needs to be modified (by adding/removing steps) in order to

accomplish the task in a new environment.
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Go to the living room. Sit on the couch and watch TV.

Walk Living room

Environment-aware 
Program (p)

New Environment (e)

Visual Demonstration (ia):

Description (da):
Activity (a): Watch TV

Find TV

Find Couch

Grab Cat

Put Cat

Sit Couch

Watch TV

Sit Couch

Watch TV

(a) 

(b) Changes: Cat on sofa

Activity Sketch (sa)

Figure 5-1: Overview of the environment-aware program generation. Our goal is (a)
generating a sketch sa distilling the essential steps of the given demonstration ia or
description da and (b) given a new environment e, generating a program p, adapting
the sketch to e. The program contains the instructions to perform the activity (blue
blocks) as well as instructions to deal with the environment (red blocks, grabbing the
cat to sit).

To address the generalization problem we represent activities with “sketches",

representations inspired by work in programming languages [138, 97]. We define

sketches as high-level representations of the steps needed to perform a task but leaving

holes that need to be completed for the program to become executable in a particular

environment.

Figure 5-1 illustrates our goal. Given a visual demonstration or a description of

someone going to watch TV, we want to extract the sketch of the activity (fig. 5-1a).

In this example, the sketch consists of two steps: Sit Couch, Watch TV. The fact
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that the demonstration had the person going to the living-room is not important.

Watching TV requires us to go to the room that contains the TV. Executing this

activity in a new environment requires expanding the sketch into a complete program

(fig. 5-1b). The sketch expansion depends on the state of the environment. In this

example, it turns out that there is a cat on the couch. To sit on the couch, we need to

push away the cat first. We show the automatically generated program that includes

all the steps needed to complete the task and to deal with the cat.

To expand sketches into programs, it is necessary to have access to commonsense

knowledge about how to perform daily activities in different environments. The Ac-

tivityPrograms dataset, presented in Chapter 3, contains around 3k activities with

associated programs, but has no information about how these activities can be done

in different environments. Therefore, we need to extend the dataset to include a

larger set of actions and over 30k programs and collect sketches of the activities via

crowd-sourcing. Each environment is represented as a graph with 300 objects and

4000 spatial relations on average.

We then propose a model to generate programs by selecting, for every step, a node

in the environment graph representing an object of interaction. To do so, we exploit

Graph Neural Networks (GNNs) to reason about the states and relations between

the objects in the environments. Furthermore, we propose ResActGraph, a model

that reasons about the changes in the graph induced by the agent’s previous steps to

generate the goal program.

In this chapter, we propose an approach to build Environment-Aware agents.

For this, we 1) introduce sketches as environment-independent representations of an

activity, 2) build a database of commonsense knowledge of activities and sketches,

and 3) present a method to generate programs from sketches that accomplish the task

in a new environment.
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5.2 Related Work

Learning from demonstrations. Learning from visual demonstrations or language

descriptions has been of increasing interest in both robotics and computer vision.

However, this has been mostly focused on learning low-level tasks rather than the high

semantic level activities that we tackle in this work. For example, [147, 93, 6] focus

on learning to navigate in environments or manipulate objects form language, while

in visual imitation learning, multiple works have used videos to learn to manipulate

objects under low supervision regimes [98, 40] or imitate kinetic human behaviors [94].

Our work is more closely related to semantic planning [59, 175, 15], which focuses

on modeling sequences of composite and semantically loaded actions. Learning those

requires inferring and modeling the sub-goals of a given task. [143] proposes to encode

the goals and task constraints via programs , whereas we consider language inputs

coupled with environments. Huang et al. [59] represent such goals as a graph, with

nodes being actions and edges being precondition states, while we propose program

representations. Furthermore, to perform such tasks, it is necessary to know what the

constraints of the given environment where it will be executed are. Similarly to [15],

we propose to encode knowledge of the environments and how they can constrain the

activities to be performed.

Program Synthesis by Sketching. Our approach for environment-aware pro-

gram generation is partially inspired by performing program synthesis by sketching.

In [138], a sketch expresses the high-level structure of an implementation but leaves

holes in place of low-level details, which corresponds to our model that derives the de-

tails based on the environmental constraints so as to execute the programs smoothly.A

recent body of work has developed neural approaches to program generation using

user-provided examples [46, 18], visual demonstrations [142], and descriptions [36].

The work [97] is the most related to ours. They learn a model that predicts sketches

of programs relevant to a label and the predicted sketches are concretized into code

using combinatorial techniques. The main difference between our work and theirs is

not only that our sketches are inferred from visual or textual data, but that we focus
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Figure 5-2: (a) We extract the ground truth environment graph from VirtualHome
and perform message passing on the graph. (b) At every time step, the decoder
perform sequential classification over the hidden states of the graphs (top row). The
selected nodes are shown in bold border blocks. We also model the environment
changes induced by the generated programs (solid red arrows).

on how to incorporate the environmental constraints in program generation.

5.3 Problem formulation

The goal of environment-aware program generation is to predict, given a demonstra-

tion or description of an activity and an environment, a program that can execute

the activity in such environment. We define this task and the corresponding notation

in this section.

Let A and E be the universe of activities and environments. An activity a (e.g.

watch TV) can be represented as a set of programs Pa containing a sequence of

instructions (e.g. TurnOn TV, Sit Sofa, Watch TV), which vary depending on how

the activity is performed. Let (p, e) be an indicator function determining if p can

be executed in e (e.g. an agent can not grab cups inside a closed cabinet). Given an

activity a 2 A and an environment e 2 E, our goal is to learn a model that generates

p such that

p 2 Pa, (p, e) = 1 (5.1)
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We use the corresponding visual demonstrations ia 2 Ia or descriptions da 2 Da

to specify a. However, ia and da are implicitly conditioned on certain environments

which might differ from the current one e. Therefore, directly inferring p̂ does not

ensure that p̂ satisfies eq. 5.1 given e.

Inspired by [138], we introduce program sketches sa 2 S as environment-independent

representations of the activities. We thus change the constraint in eq. 5.1 to be:

p 2 Psa , (p, e) = 1 (5.2)

With the program sketches as proxy representations, we can divide the task into

two sub-problems: a model that predicts a sketch ŝa from a demonstration ia or a

description da and another model that predicts a program p̂ given the predicted sketch

ŝa and an environment e:

p̂ = fsketch2prog(ŝa, e),where

ŝa = fdemo2sketch(ia) or ŝa = fdesc2sketch(da)

(5.3)

Here, p and sa are a sequence of instructions. Each instruction is represented by an

action and up to two arguments representing objects of interaction (↵, �
1
, �

2
).1

5.4 Method

In this section, we present our approach to the environment-aware program generation

task. First, we introduce ResActGraph to generate programs from sketches and target

environments. Later on, we describe how we predict sketches from demonstrations or

descriptions.

1
The number of arguments depends on the type of the action, see Table 2.2 for the list of actions

along with the number of arguments.
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5.4.1 Program generation from sketches and graphs

We frame the program generation task as a seq2seq problem, where an encoder en-

codes the input sketch and the decoder generates the target program one instruction

at a time, composed by an action and object arguments. Given that the program

must be grounded in a target environment, instead of predicting the objects from

a fixed taxonomy, the model predicts for each instruction object instances that are

present in the environment. This has two benefits: (1) It avoids referring to object

instances that do not exist in the environment. (2) It allows the model to use infor-

mation of each instance within the environment, such as its state or relations with

other objects, to predict the appropriate instruction.

To do that, we encode the scene as a graph G = (V ,R) modeling the dependencies

of the object instances. The node v 2 V indicates the object instance and each node

has a label, including the object class cv, its states lv, and properties propv. Note that

V includes a node for the agent itself. The edge r 2 R encodes the spatial relations,

including ON, IN_OBJ, IN_ROOM, CLOSE_TO, and FACE_AT, between every

two object instances.

The node labels and relations are used to obtain vector embeddings for each

instance which are used by the decoder to predict the environment-aware program,

as we describe in the following section.

5.4.2 ResActGraph

We adopt the GGNN [83] framework to obtain the hidden states of the nodes and

capture the object relations in the environment graph. The hidden states of each

node v are initialized by its label (cv, lv, propv):

h
0
v
= tanh(ginit([Wccv,Wllv,Wproppropv]) (5.4)

We apply one-hot encoding to the label and set Wc,Wl,Wprop as learnable weights.

ginit is a network composed of fully connected layers that combine all the information.

At propagation step k, each node’s incoming information x
k

v
is determined by
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aggregating the hidden states of its neighbors v
0
2 N (v) at the previous step k � 1:

x
k

v
=

X

j2L(R)

X

v02Nj(v)

Wpjh
k�1
v0 + bpj (5.5)

L(R) denotes the set of edge labels and the linear layer Wpj and bias bpj are shared

across all nodes.

After aggregating the information, the hidden states of the nodes are updated

through a gating mechanism similar to Gated Recurrent Unit (GRU) [31] as follows:

z
k

v
= ⇢(Wzx

k

v
+ Uzh

k�1
v

+ bz),

r
k

v
= ⇢(Wrx

k

v
+ Urh

k�1
v

+ br),

ĥ
k

v
= tanh(Whx

k

v
+ Uh(r

k

v
� h

k�1
v

) + bh),

h
k

v
= (1� z

k

v
)� h

k�1
v

+ z
k

v
� ĥ

k

v

(5.6)

This results in a vector embedding for each object h
k

v
, with information about its

state and relationship with the environment.

We use one GRU to encode the sketches and another one to generate the program

one instruction at a time. For time t, let feat
sa

= enc(sa) be the output of the

sketch encoder, and h
t

dec
the hidden states of the decoder. To predict the program

instruction, (↵̂t, �̂
1
t , �̂

2
t
), we predict the first object argument �1

t
over the graph nodes,

use it to predict the action ↵̂t and combine this information to predict the second

argument �̂
2
t
:

�̂
1
t
= argmax

v2V
�(g�1(h

t

dec
, h

K

v
, feat

sa
))

↵̂t = argmax
↵2A

�(g↵(h
t

dec
, h

K

�̂
1
t
, feat

sa
))

�̂
2
t
= argmax

v2V
�(g�2(h

t

dec
, h

K

v
, feat

sa
, h

K

�̂
1
t
, ↵̂t))

(5.7)

where A is all the possible actions and � denotes the softmax function.
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Note that so far the hidden states of the nodes h
K

v
are constant over t, but we

would like them to change according to the program being executed. To do that,

at time t, we use the previously generated instructions (↵̂<t, �̂
1
<t
, �̂

2
<t
) to update the

hidden states of the nodes. We set the initial state of each node as h
K0
v

= h
K

v
and

update the state h
Kt
v

at time t if v is interacted by the agent at the previous time

step or is the agent itself. For example, if the instruction at the previous time step

is grab mug, we use the action embeddings of grab to change the hidden states of

agent and mug. Let v̂ correspond to the agent node or one of the previous arguments

�̂
1
t�1, �̂

2
t�1. The state h

Kt�1

v̂
is updated as follows:

h
Kt
v̂

= h
Kt�1

v̂
+ r

r = tanh(gres(h
Kt�1

v̂
� ge(Emb(↵̂t�1),mt�1)))

(5.8)

where Emb(↵̂t�1) is the embedding of ↵̂t�1 and mt�1 is a one-hot encoding denoting

if v is the subject or the object of ↵̂t�1. ge and gres consider the change of the h
Kt�1

v̂

and predict the residuals. Note that since the node agent is involved at every time

step, it tracks the progress through the generation. The model overview is shown in

Figure 5-2.

Learning. We use the cross-entropy loss function for program prediction. The

GGNN and GRUs are then trained with the back-propagation through time (BPTT).

5.4.3 Inferring sketches

Activities specified by demonstrations. We use key frames i = [in]n=1:Ndemo

as the representations of the demonstrations, where Ndemo is the length of the key

frames. To be specific, we take the bird-eye view of each in. Besides, we also use the

ground truth semantic segmentation map iseg = [isegn]n=1:Ndemo
as input. Two CNNs

are used to extract the features separately, and we apply late fusion to extract the

n
th visual features featn as follows:
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featn = gfuse([CNNi(in), CNNseg(isegn)]) (5.9)

where [, ] denotes concatenation. Later on, we max-pool the features over the different

steps time steps and apply a GRU to decode the sketches.

Activities specified by descriptions. We adopt the seq2seq model with a GRU

encoding each word in the description and a GRU to decode each of the sketch

instructions.

5.5 Dataset

Our goal is to generate a sketch sa from a demonstration ia or description da and

induce a program p from sa and a target environment e. To train a model that

can do this, we need a dataset containing activities, paired with demonstrations and

descriptions, sketches, programs and the environment where the program will be

executed. In Chapter 3 we introduced ActivityPrograms, a crowd-sourced dataset

with typical daily activities along with their descriptions and programs. We describe

here how we can augment this dataset to allow training environment-aware agents.

5.5.1 Collecting sketches

When collecting each activity in VirtualHome, annotators imagine an environment

where the activity could take place and provide a description according to it. As a

result, the description and subsequent program is specific to a given environment,

but may not be doable when presented with new environments or constraints (see

Figure 5-3). Therefore, we need a more abstract representation of an activity, which

can be consistent with multiple environments as well as the original program and

description.

Inspired by [138], we collect the sketches of the activities to abstract out the

components that are environment-dependent and informally define the sketches as

the environment independent representations. Different from programming languages,
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Description:

Pick up my dirty clothes 
from the bedroom, load the 
washer, add detergent, and 
turn on washer

Washing machine off

Washing machine in 
entrance hall

Clothes in bedroom

Detergent near 
washing machine

No clothes inside 
washing machine

Walk Bedroom

Walk Clothes

Grab Clothes

Walk Entrance hall

Walk Washing machine

Open Washing machine

Put Clothes

Grab Detergent

Put Detergent

Run Washing machine

(1)

(2)

Preconditions

Programs

Figure 5-3: The annotators label the descriptions and programs with certain envi-
ronments in mind (bottom left), resulting in the environment-dependent descriptions
and programs. The blocks colored in blue are considered as environment-dependent
components.

it is highly non-trivial to define the sketches of the activities since they depend on

the commonsense of each individual. Therefore, we manually collect the sketches for

each program, obtained a tuple (a, ia, sa, p) or activities, descriptions, sketches and

programs.

5.5.2 Pairing programs with environments

We finally need to add an environment that pairs with the activity programs. Since

we do not know the environment that each annotator had in mind, we need to infer it

from the program. We first extract the preconditions of the programs and use them to

sample feasible environments. We define preconditions of a program as the conditions

that have to be true in the environment in order to execute the program in it. For

example, in order to execute Watch TV, the tv should be on. We construct a function

� that infers the preconditions from p given a set of rules, and sample e from the

set of environments in Figure 2-2, updating it so that it satisfies such preconditions
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E�(p):

e ⇠ E�(p) ⇢ E, s.t. 8j 2 �(p), e satisfies j (5.10)

The above is a weak constraint over the environments, since it does provide informa-

tion about objects that are not specified in the preconditions �(p). To get realistic

environments, these objects should follow some priors. For example, couches can be

occupied, but they can not be cold. Apples can be stored inside fridges, but they

are seldom found in bathtubs. Thus, we build KB-RealEnv , a knowledge base of

common-sense rules of object relationships, and use it to set the environment where

the task will be executed. In particular, we 1) select environment e that satisfies the

inferred pre-conditions, 2) pick objects that appear in the program but which loca-

tion is not specified by a precondition, as well as an extra set of random objects to

make the environment more diverse, and 3) add these objects into the environment,

making sure they satisfy the rules in KB-RealEnv. The knowledge base can be seen

on Table A.2 and A.3.

5.5.3 Generating demonstrations

We can now obtain demonstrations for the activities in our dataset by executing each

activity program in the matching environment. Here, instead of letting VirtualHome

perform the mapping between objects in the program and the ones in the environment,

as we did in Section 4.4, we perform the assignment before executing the program,

at the time of generating the matching environment. This ensures that the objects

in the program match with objects that satisfy the preconditions.

5.5.4 Extending programs to diverse environments

We now have the information (a, ia, da, sa, e, p). However, relying solely on the orig-

inal programs results in a limited set of preconditions and thus environments. One

possible reason is that when describing activities, annotators tend to assume the sim-

plest setting to perform the given activity. For example, when thinking of doing the
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VirtualHome Executable Augmented VirtualHome-Env
# programs 2807 1387 27284 32761
Average length 13.26 9.61 18.58 18.79
Average # nodes - 289 290 289
Average # edges - 4393 4305 4319

Table 5.1: The statistics of VirtualHome-Env. The fact that some programs in Vir-
tualHome are noisy results in less number of executable programs.

laundry, it is common to imagine that the washing machine is idle or empty. To

address that, we use the VirtualHome-Symbolic simulator (described in Section 2.5),

that takes a program p and environment graph e and outputs the graph corresponding

to the environment after executing the program, and extend it to raise an exception

if the program is not executable at a certain step. We call this simulator  . Given a

program with preconditions �(p), we start by randomly perturbing them into �(p)0

and use eq. 5.10 to obtain e
0 as an environment satisfying �(p)0. Then, we execute p in

the simulator with the environment e0. Given that the environment and preconditions

have changed but the program is still the same, as the program is executed, some

exception will be raised from the simulator. Then, a subroutine is called to modify

the program p into p
0, by inserting or removing instructions to correct the exception,

obtaining the extended program.

For example, when we executing Sit Sofa, if Sofa is occupied, the subroutine is

expected to perform actions to remove things on the Sofa until there is enough space

to Sit. We manually compose the subroutines based on different types of exception,

forming the knowledge base, KB-ExceptionHandler. We show more details of how we

augment the programs in the supplementary materials.

This way, we augment over 30k tuples of sketches, environments, and programs

(sa, e
0
, p

0
). Note that the sketches sa are environment-independent, so there is no need

to change them after applying the subroutines.
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Figure 5-4: The effect of the dataset augmentation: changes in the distribution of
preconditions for the objects in the environment.

5.5.5 Dataset Analysis

From the original 2807 programs in VirtualHome, we trim out the programs that can

not be executed in the simulator with the environment sampled via preconditions,

obtaining 1387 executable programs. Using the process described in Section 5.5.4, we

extend these programs to our final dataset with around 30k programs. The significant

increase in the program length is induced by the modified preconditions. For example,

the agent needs to open containers to reach objects or make space to sit on a sofa.

In Table 5.1, we show the statistics of the new dataset. To better understand the

effects of augmentation, we show in Figure 5-4 shows the change in the distribution of

preconditions of two example object classes, the cup and the sauce pan. The programs

after augmentation show a less skewed distribution of preconditions, allowing for more

diverse environments. Finally, we use the simulator to generate snapshots of the

environment after executing each instruction of a program, as shown in Figure A-5.

Note that some of the objects in the program do not have a model in the simulator,

so we generate frames for a subset of 8421 programs.
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LCS F1-relation F1-state F1 Executability Parsability
Nearest Neighbors .127 .019 .288 .041 - -
Unaries .372 .162 .142 .159 24.8% 75.3%
Graph .404 .171 0.171 .172 23.1% 82.2%
FCActGraph .469 .261 .273 .263 33.7% 88.6%
GRUActGraph .508 .410 .408 .411 48.9% 87.9%
ResActGraph .516 .410 .420 .413 49.3% 85.3%

Table 5.2: Induce program from ground truth sketches and ground truth graphs.
(K = 2)

LCS F1-relation F1-state F1

Unaries (K=0) .372 .160 .142 .592
ResActGraph (K=1) .427 .262 .271 .264
ResActGraph (K=2) .516 .410 .420 .413
ResActGraph (K=3) .513 .399 .407 .401

Table 5.3: Ablation study of the propagation steps K.

5.6 Experiments

We split the dataset into train and test set in terms of different types of activities with

ratio 7:3 and leave one apartment for the test set. We aim to test the capability of

our model with novel activities and environments. We follow the same split for sketch

prediction, where we only keep the original programs for the desc2sketch, since they

contain the collected descriptions, and use the available frames for the demo2sketch

task.

In this section, we describe the evaluation metrics, baselines. Next, we show the

extensive experiment results of ResActGraph. Finally, we analyze the extent to which

the proposed method is environment-aware. We will describe the implementation

details in supplementary materials.

5.6.1 Evaluation Metrics

We analyze the performance of sketch prediction and program generation by measur-

ing the normalized longest common subsequence (LCS) between the generated and

ground truth sequences. LCS is sensitive to the order of the sequences and allows gaps
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in between. To further measure if the generated programs achieve the specified activ-

ities, we compute the differences between the final environment graphs Ĝ =  (p̂, e)

and G =  (p, e) using F1 scores2. In particular, we only compared the sub-graph

containing the object instances mentioned in p and p̂. We describe the details of

F1(Ĝ, G) in the supplementary materials. Inspired by [7], we also compute F1-state

and F1-relation.

Furthermore, inspired by program synthesis, we care whether the generated pro-

grams are “compilable” as well. We evaluate if the generated programs can be parsed

(parsibility) and executed (executability) by the simulators. We will describe the

detailed definition of them in the supplementary materials.

5.6.2 Baselines

We implement five different baselines of environment-aware agents to compare with

the proposed ResActGraph.

Nearest Neighbors: For every example in the testing set, we retrieve the training

sample that has a sketch with the highest LCS. In case of a tie, we pick the one with

the most similar initial graph.

Unaries: We set K = 0 in Eq. 5.7. This model does not consider the relations of

the objects. We use it to showcase the benefits of modeling object relations.

Graph: This model does not consider the change of graphs induced by programs

(Eq. 5.8).

FCActGraph: This model uses a FC layer to model the graph changes. Specifically,

it takes the [h
Kt�1
v

, Emb(↵̂t�1),mt�1] as inputs and outputs h
Kt
v

.

GRUActGraph: This model treats the graph changes as another sequence and uses

a GRU to ingest [Emb(↵̂t�1),mt�1] as inputs and considers h
Kt�1
v

as hidden state to

output h
Kt
v

.

2
If the generated programs cannot be parsed or cannot be executed, the F1 is set to be 0.
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Sketch GT Program Generated Program
[Open] <washing machine>  
[Put] <basket> <washing machine> 
[Put] <soap>  <washing machine> 
[SwitchOn] <washing machine> 

[Walk] <bedroom> (273)
[Walk] <basket> (1000)
[Find] <basket> (1000)
[Grab] <basket> (1000)
[Walk] <bathroom> (1)
[Walk] <washing machine> (1001)
[Find] <washing machine> (1001)
[Open] <washing machine> (1001)
[Put] <basket> (1000) <washing machine> (1001)
[Find] <soap> (1002)
[Grab] <soap> (1002)
[Put] <soap> (1002) <washing machine> (1001)
[Find] <washing machine> (1001)
[Close] <washing machine> (1001)
[PlugIn] <washing machine> (1001)
[SwitchOn] <washing machine> (1001)

[Walk] <bedroom> (273) 
[Walk] <basket> (1000) 
[Find] <basket > (1000) 
[Grab] <basket > (1000)
[Find] <washing machine> (1001)
[Open] <washing machine> (1001)
[Put] <basket> (1000) <washing machine> (1001) 
[Find] <soap> (1002) 
[Grab] <soap> (1002) 
[Put] <soap> (1002) <washing machine> (1001) 
[Close] <washing machine> (1001)
[Plugin] <washing machine> (1001) 
[SwitchOn] <washing machine> (1001)

Environment
Washing machine (1001) is closed
Washing machine (1001) is off
Washing machine (1001) is unplugged 
Washing machine (1001) in bathroom (1)
Soap (1002) inside Washing machine (1001)

Figure 5-5: An example of the prediction of ResActGraph. We colore the LCS between
the prediction and ground truth in light green. Note that the sketch is environment
agnostic, so it does not specify the ‘id’ (the number in the parentheses) of the object
instances.

5.6.3 Results

We show the results of ResActGraph quantitatively and qualitatively. Next, we show

the ablation study of the number of the graph propagation steps. Finally, we show

the prediction results of the whole system.

Program generation from sketches and graphs. The results are shown in

Table 5.2. By comparing the Graph and Unaries, we show that aggregating informa-

tion from neighboring nodes increases performances in nearly all metrics.

The three bottom rows of Table 5.2 show the results of models that consider graph

changes induced by programs. The F1 scores and executability benefit the most,

which is expected. For example, suppose there is a glass near an opened cabinet in

the environment and the model predicts (Grab Glass, Put Glass Cabinet, Close

Cabinet) at the first three steps, if the model wants to grab other things from the

cabinet without opening it after t � 4, it fails since the cabinet is closed at t = 3.

Among the three bottom rows of Table 5.2, the proposed ResActGraph performs

the best in F1. The reason is that using the residual architecture is easier for the

model to learn the state “changes” compared to using FC. Using GRU to encode the

state changes is also an alternative, but we observe that it converges slower since it

has more number of parameters to learn and does not perform better.
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Sketch [Sit] <sofa>
[Read] <book>

Environment 1 Generated Program 1 Environment 2 Generated Program 2

Book (263) in bedroom (23)
Bookmark (27) near  book (263) 
Bookmark (27) in bedroom (23)
Sofa (101) in bedroom (23)
Sofa (101) near bookmark (275) 
Sofa (101) is free
Book (263) near sofa (1001) 

[Walk] <bedroom> (23)
[Walk] <book>  (263) 
[Find] <book> (263) 
[Grab] <book> (263) 
[Find] <sofa>  (101) 
[Sit] <sofa>  (101) 
[Find] <bookmark>  (27) 
[Read] <book> (263) 

Sofa (101) in bedroom (23)
Book (263) in bedroom (23)
Bookmark (27) in bedroom (23)
Sofa (101) occupied
Phone (75) on sofa (101) 
Cards (261) on sofa (101) 
Game (231) on sofa (101) 
Check (213)  on sofa (101) 

[Walk] <bedroom>  (23)
[Walk] <sofa>  (101) 
[Find] <sofa>  (101) 
[Find] <phone>  (75) 
[Grab] <phone> (75) 
[Release] <phone> (75) 
[Find] <cards>  (261) 
[Grab] <cards> (261) 
[Release] <cards> (261) 
[Find] <game> (231)

[Grab] <game>  (231) 
[Release] <game> (231) 
[Find] <check> (213)
[Grab] <check>  (213)
[Release] <check> (213)
[Sit] <sofa> (101) 
[Standup]  
[Walk] <book>  (263) 
[Find] <book>  (263) 
[Grab] <book> (263) 
[Read] <book> (263) 

Figure 5-6: An example of the prediction of ResActGraph with the same sketch, but
different environments. We highlight the difference between two environments with
orange and color the LCS between two predictions in light green.

Demonstration Environment Generated Sketch Generated Program

Phone (10) in living room (1) [Grab] <phone> [Walk] <living room> (1)
[Walk] <phone> (10)
[Find] <phone> (10)

[Walk] <phone> (10)
[TurnTo] <phone> (10)
[LookAt] <phone> (10)
[Grab] <phone> (10)

Description Environment Generated Sketch Generated Program

Walk into the home office. Walk up to 
the chair, sit down in the chair. Type 
with the keyboard.

Chair (29) close to keyboard (2)
Chair (29) is free
Keyboard (2) close to computer
Computer (31) in living room (1)

[Sit] <chair>
[Type] <keyboard>

[Walk] <living room> (1)
[Walk] <desk> (137)
[Find] <chair> (29)

[Sit] <chair> (29)
[Find] <keyboard> (2)
[Type] <keyboard> (2)

Figure 5-7: Predictions from the ResActGraph given sketches from descriptions and
demonstrations.

In Figure 5-5, we show the qualitative results of ResActGraph. Even though the

generated program does not exactly match the ground truth, it reaches nearly the

same environment state. In Figure 5-6, we show the results with the same sketch, but

different initial environment states. Note that we only show the states and relations

related to the programs. The model correctly induces correct actions w.r.t. the envi-

ronment changes and the two generated programs nearly reach the same environment

states.

Ablation studies. We show the effect of the number of propagation steps K in

Table 5.3. Both the baseline and the proposed model benefit as K increases, and the

proposed model performs better than the baseline regardless of different K. We found

that the performance saturates when K = 2, so we fixed it for all other experiments.

Combining predicted sketches with ResActGraph. The LCS of fdemo2sketch

and fdesc2sketch are 0.15 and 0.27 respectively. The reason why the LCS is low is that
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LCS F1-relation F1-state F1 Executability Parsability
Unaries .289 .188 .191 .189 44.4% 73.4%
Graph .297 .241 .233 .241 43.9% 89.9%
ResActGraph .331 .347 .339 .348 63.3% 92.5%

Table 5.4: Induce program from sketches predicted from decsriptions and ground
truth graphs. (K = 2)

LCS F1-relation F1-state F1 Executability Parsability
Unaries .257 .099 .090 .098 25.6% 74%
Graph .284 .202 .202 .203 34.3% 82.8%
ResActGraph .327 .316 .323 .318 54.7% 86%

Table 5.5: Inducing program from sketches predicted from demonstrations and ground
truth graphs. (K = 2)

they are significantly shorter (on average 2.4 instructions) than the programs (on

average 18.79). This makes the sketch prediction a quite challenging task where LCS

is highly penalized even under small errors.

With the trained model, we can directly generate the programs from the demon-

strations or descriptions. Note that we do not re-train the program generation model.

In Table 5.4 and Table 5.5, we show the results of the program generation with the

sketches predicted from descriptions and demonstrations respectively. The perfor-

mance gap between the proposed model and the baselines becomes small. The reason

is that the model is confused when the non-perfect sketches are given, resulting in

similar performance. Note that all models still perform better than Unaries. Quali-

tative results are shown in Figure 5-7, showing that the model predicts the plausible

sketch and ResActGraph generates plausible programs w.r.t to the sketch and the

graph.

5.7 Discussion

In this Chapter, we moved beyond agents that would blindly perform activities in an

environment and proposed a method to build environment-aware agents. We intro-

duced sketches as environment-independent activity representations and addressed

the problem in two steps: generating sketches from demonstrations or descriptions
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and generating programs from sketches and graphs. To this end, we proposed a

novel model, ResActGraph and created a dataset VirtualHome-Env, with sketches,

environments, and programs to train and test it.

The environment-aware program generation is far from being solved and opens

exciting research directions. While we assume access the truth state of the envi-

ronment graph, one natural extension would be to predict it from environment ob-

servations [162], but this would still require an oracle providing observations of the

interior of closed objects or unexplored areas, or a way to infer those from a partial

observation of the environment. Additionally, though the ResActGraph updates the

hidden states of nodes at each time step, the graph structure is only considered at

the first step, when we do message passing to obtain the object embeddings. This

approach works under this problem setting because there is only one agent in the

environment, and therefore all the changes in the graph will be caused by this agent’s

actions. As a result, the ResActGraph model can learn to modify the embeddings of

different objects according to the actions taken by the agent. This approach would

not work if there was another agent interacting in the environment whose actions

were not known, or in the case of a partially observable environment.

All the above are strong assumptions if we care about building assistive agents,

since in most cases they will be coexisting with other humans who interact in the

environment concurrently with the agent. In Part III we address these limitations,

and study how to build agents that assist humans concurrently interacting in the

environment.
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Part III

Agents and benchmarks for

Human-AI assistance
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In Part I we presented a platform for agents to learn to interact in household

environments and in Part II we described different approaches to command agents to

perform household activities in our platform. Learning these activities in simulation

provides a safe and scalable way to test agents under different conditions, before they

can be deployed in the real world. However, for these agents to be effective assistants,

they need to be able to cooperate with humans in the environments, adapting to their

goals, preferences and behavior.

The Part III of this thesis explores this topic. We aim to build agents that

instead of performing tasks instructed by humans, they can collaborate with them

in performing these goals. For this, there are several challenges we need to address:

1. Human Models: We need to be able to simulate humans in simulation to

reflect more realistically changing environments and so that agents can reason

about their actions when collaborating in performing a given activity.

2. Evaluation: We need an evaluation framework to measure what constitutes

effective assistance so that we can make progress in this task.

3. Models of Assistance: We need to build agents that can understand what

are the goals of the humans and collaborate with them in achieving those goals.

In the next chapters we explore these questions. We propose agents that can serve

as proxies for humans that interact in the environment to achieve different tasks. In

contrast to the helper agents introduced in Part II, goals here are specified via logical

predicates over the environment state (e.g. there should be 2 apples inside the fridge).

Rather than using learned models, these agents are implemented via task planners,

ensuring that their behavior is robust to other agents interacting in the environment.

We then evaluate the effectiveness of different assistive agents by testing them with

these human-like agents In particular, we measure the speedup of a task when the

human is assisted by an agent compared to when the human does the task alone.

Chapter 6 explores the setting where the helper agent is shown a demonstration

of a task, and is later asked to helper a human in completing the task in a new
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environment. This setting is more challenging than the models introduced in Chap-

ters 4 and 5, because both the human and the helper agents have partial observations

over the environment and therefore have to explore and search for objects in order

to complete tasks. We propose Watch-And-Help, a benchmark to study this problem

quantiatively, as well as different agents to assist humans under this setting.

In Chapter 7 we extend the previous setting to agents that can offer assistance

without a prior demonstration of the activity they need to help on. For this, we

introduce Online-Watch-And-Help, a benchmark where agents have to concurrently

infer what is the activity that the human is trying to do and assist in them in that

activity. We propose a Neurally-Guided Inverse Planning approach to build an agent

that can achieve this.
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Chapter 6

Watch-And-Help: A Challenge for

Human-AI Collaboration

6.1 Introduction

Humans exhibit altruistic behaviors at an early age [156]. Without much prior ex-

perience, children can robustly recognize goals of other people by simply watching

them act in an environment, and are able to come up with plans to help them, even

in novel scenarios. In contrast, the most advanced AI systems to date still struggle

with such basic social skills.

In order to achieve the level of social intelligence required to effectively help hu-

mans, an AI agent should acquire two key abilities: i) social perception, i.e., the

ability to understand human behavior, and ii) collaborative planning, i.e., the ability

to reason about the physical environment and plan its actions to coordinate with

humans. In this chapter, we are interested in developing AI agents with these two

abilities.

Towards this goal, we introduce a new AI challenge, Watch-And-Help (WAH),

which focuses on social perception and human-AI collaboration. In this challenge, an

AI agent needs to collaborate with a human-like agent to enable it to achieve the goal

faster. In particular, we present a 2-stage framework as shown in Figure 6-1. In the

first, Watch stage, an AI agent (Bob) watches a human-like agent (Alice) performing
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a task once and infers Alice’s goal from her actions. In the second, Help stage, Bob

helps Alice achieve the same goal in a different environment as quickly as possible

(i.e., with the minimum number of environment steps).

This 2-stage framework poses unique challenges for human-AI collaboration. Un-

like prior work which provides a common goal a priori or considers a small goal space

[47, 26], our AI agent has to reason about what the human-like agent is trying to

achieve by watching a single demonstration. Furthermore, the AI agent has to gener-

alize its acquired knowledge about the human-like agent’s goal to a new environment

in the Help stage. Prior work does not investigate such generalization.

To enable multi-agent interactions in realistic environments, we will be testing

this framework in VirtualHome. In contrast to previous chapters, here we will run

the simulator interactively (that is, we will obtain observations and take actions one

step at a time), and with multiple agents interacting concurrently, where one of the

agents will be representing the human (Alice) and the other agent the helper (Bob).

Furthermore, to test whether these agents are effective at assisting real humans, we

build an interface for humans to interact with the simulator, and complete tasks

assisted by the proposed agents.

We design an evaluation protocol and provide a benchmark for the challenge, in-

cluding a goal inference model for the Watch stage, and multiple planning and deep

reinforcement learning (DRL) baselines for the Help stage. Experimental results indi-

cate that to achieve success in the proposed challenge, AI agents must acquire strong

social perception and generalizable helping strategies. These fundamental aspects of

machine social intelligence have been shown to be key to human-AI collaboration in

prior work [48, 5]. In this work, we demonstrate how we can systematically evaluate

them in more realistic settings at scale.

Our main contributions are: i) a new social intelligence challenge, Watch-And-

Help, for evaluating AI agents’ social perception and their ability to collaborate with

other agents, ii) an extension to VirtualHome to allow interactions with built-in agents

or real humans, and iii) a benchmark consisting of multiple planning and learning

based approaches which highlights important aspects of machine social intelligence.
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WATCH stage: Bob watches Alice’s behaviors and infers her goal

HELP stage: Bob works with Alice to achieve her goal

Bob’s task: guess Alice’s goal and help herAlice’s task: set up a dinner table

to set up a
Alice may want

dinner table

Figure 6-1: Overview of the Watch-And-Help challenge. The challenge has two stages:
i) in the Watch stage, Bob will watch a single demonstration of Alice performing a
task and infer her goal; ii) then in the Help stage, based on the inferred goal, Bob
will work with Alice to help finish the same task as fast as possible in a different
environment.

6.2 Related Work

Human activity understanding. An important part of the challenge is to under-

stand human activities. Prior work on activity recognition has been mostly focused

on recognizing short actions [133, 23, 41], predicting pedestrian trajectories [73, 3],

recognizing group activities [129, 32, 61], and recognizing plans [70, 114]. We are

interested in the kinds of activity understanding that require inferring other peo-

ple’s mental states (e.g., intentions, desires, beliefs) from observing their behaviors.

Therefore, the Watch stage of our challenge focuses on the understanding of humans’

goals in a long sequence of actions instead. This is closely related to work on com-

putational Theory of Mind that aims at inferring humans’ goals by observing their

actions [11, 152, 113, 131]. However, in prior work, activities were simulated in toy

environments (e.g., 2D grid worlds). In contrast, this work provides a testbed for

conducting Theory-of-Mind type of activity understanding in simulated real-world

environments.

Embodied Human-AI cooperation benchmarks. Conventional human-robot

cooperation studies have typically been conducted in lab environments [47, 34, 103,

118], lacking both reproducibility and scalability. Recently there have been bench-
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ON(plate, table): 2
ON(glass, table): 1
ON(fork,  table): 1

Ground-truth Goal VirtualHome-Social

Task Demonstration

Environment
(Unseen in demonstration)

Alice’s action

Bob’s action
Bob’s Model

Built-in Alice
or Human

Alice’s observation

Bob’s observation

WATCH stage HELP stage
VirtualHome

Figure 6-2: The system setup for the WAH challenge. An AI agent (Bob) watches a
demonstration of a human-like agent (Alice) performing a task, and infers the goal (a
set of predicates) that Alice was trying to achieve. Afterwards, the AI agent is asked
to work together with Alice to achieve the same goal in a new environment as fast as
possible. To do that, Bob needs to plan its actions based on i) its understanding of
Alice’s goal, and ii) a partial observation of the environment. It also needs to adapt to
Alice’s plan. We simulate environment dynamics and provide observations for both
agents in our VirtualHome multi-agent platform. The platform includes a built-in
agent as Alice which is able to plan its actions based on the ground-truth goal, and
can react to any world state change caused by Bob through re-planning at every step
based on its latest observation. Our system also offers an interface for real humans
to control Alice and work with an AI agent in the challenge.

marks designed to systematically evaluate agents’ ability to collaborate with human

teammates [26, 13]. However, most of the existing benchmarks focus on simple game

environments and assume a common goal given to both the AI and human agents a

priori. The setup in WAH is much more challenging – the goal is sampled from a

large space, needs to be inferred from a single demonstration, and must be performed

in realistic and diverse household environments through a long sequence of actions.

6.3 The Watch-And-Help Challenge

The Watch-And-Help challenge aims to study AI agents’ ability to help humans in

household activities. To do that, we design a set of tasks defined by predicates

describing the final state of the environment. For each task, we first provide Bob a

video that shows Alice successfully performing the activity (Watch stage), and then

place both agents in a new environment where Bob has to help Alice achieve the same

goal with the minimum number of time steps (Help stage).
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Figure 6-2 provides an overview of the system setup for the Watch-And-Help chal-

lenge. For this challenge, we will be using VirtualHome, allowing agents to interact

concurrently in the environment and providing observations for the agents. Alice

represents a built-in agent in the system; she plans her actions based on her own goal

and a partial observation of the environment. Bob serves as an external AI agent,

who does not know Alice’s ground-truth goal and only has access to a single demon-

stration of Alice performing the same task in the past. During the Help stage, Bob

receives his observation from the system at each step and sends an action command

back to control the avatar in the environment. Alice, on her part, updates her plan

at each step based on her latest observation to reflect any world state change caused

by Bob. We also allow a human to control Alice in our system. We discuss how the

system and the built-in agent work in Section 6.4.

Problem Setup. Formally, each task in the challenge is defined by Alice’s goal

g (i.e., a set of goal predicates), a demonstration of Alice taking actions to achieve

that goal D = {s
t

Alice, a
t

Alice}
T

t=1 (i.e., a sequence of states s
t

Alice and actions a
t

Alice),

and a new environment where Bob collaborates with Alice and help achieve the same

goal as quickly as possible. During training, the ground-truth goal of Alice is shown

to Bob as supervision; during testing, Bob no longer has access to the ground-truth

goal and thus has to infer it from the given demonstration.

Goal Definitions. We define the goal of a task as a set of predicates and their

counts, which describes the target state. Each goal has 2 - 8 predicates. For instance,

“ON(plate, dinnertable):2; ON(wineglass, dinnertable):1” means “putting two

plates and one wine glass onto the dinner table.” The objects in a predicate refer to

object classes rather than instances, meaning that any object of a specified class is

acceptable. This goal definition reflects different preferences of agents (when setting

up a dinner table, some prefer to put water glasses, others may prefer to put wine

glasses), increasing the diversity in tasks. We design five predicate sets representing

five types of household activities: 1) setting up a dinner table, 2) putting groceries /

leftovers to the fridge, 3) preparing a simple meal, 4) washing dishes, and 5) reading

a book while having snacks or drinks. In total, there are 30 different types of predi-
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cates. In each task, the predicates of a goal are sampled from one of the five predicate

sets (as a single household activity). More details about the predicate sets and goal

definitions are listed in Appendix B.2.1.

6.4 Environment

Building machine social intelligence for real-life activities poses additional challenges

compared to typical multi-agent settings, such as far more unconstrained goal and

action spaces, and the need to display human actions realistically for social perception.

With that in mind, we use VirtualHome to test our challenge. We set the platform

so that multiple agents (including real humans) can execute actions concurrently and

observe each other’s behaviors. Furthermore, we embed planning-based agents in the

environment as virtual humans that AI agents can reason about and interact with.

In the rest of this section, we describe the observations, actions, and the built-in

human-like agent that we will be using for this challenge. Appendix B.1 includes

more information.

Observation space. As described in Section 2.4, VirtualHome supports symbolic

and visual observations, allowing agents to learn helping behaviors under different con-

ditions. The symbolic observations consist on a scene graph, with nodes representing

objects and edges describing spatial relationships between them. To focus on the

coordination aspects of the challenge, in this work we use symbolic observations. We

consider two types of observations: 1) full observations, which allows agents to obtain

full information about the environment via scene graph and 2) partial observations,

which only allows the agents to see a local subset of objects based on a symbolic

"field-of-view", that is, those objects that are in the same room as the agent and are

not inside some closed container.

Action space. Agents can navigate in the environment and interact with objects

in it. Remember that, to interact with objects, agents need to specify an action and

the index of the intended object (e.g., “grab h3i” stands for grabbing the object with

id 3). We want agents that behave like humans, acting in the environment based on
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the information they have in the moment. Therefore, an agent can only interact with

objects that are within its field of sight, changing its action space at every step.

Human-like agents. To enable a training and testing environment for human-

AI interactions, it is critical to incorporate built-in agents that emulate humans when

engaging in multi-agent activities. [26] has attempted to train policies imitating

human demonstrations. But those policies would not reliably perform complex tasks

in partially observable environments. Therefore, we devise a planning-based agent

with bounded rationality. This agent operates on the symbolic representation of its

partial observation of the environment. As shown in Figure 6-3, it relies on two

key components: 1) a belief of object locations in the environment (Figure B-3 in

Appendix B.1.1), and 2) a hierarchical planner, which uses Monte Carlo Tree Search

(MCTS) [22] and regression planning (RP) [75] to find a plan for a given goal based on

its belief. We use VirtualHome-Symbolic, defined in Section 2.5 as a world-model for

the planner. At every step, the human-like agent updates its belief based on the latest

observation, finds a new plan, and executes the first action of the plan concurrently

with other agents. The proposed design allows agents to robustly perform tasks in

partially observable environments while producing human-like behaviors1. We provide

more details of this agent in Appendix B.1.1.

6.5 Benchmark

6.5.1 Evaluation Protocol

Training and Testing Setup. We create a training set with 1011 tasks and 2

testing sets (test-1, test-2). Each test set has 100 tasks. We make sure that i) the

helping environment in each task is different from the environment in the pairing

demonstration (we sample a different apartment and randomize the initial state, sim-

ilar to Section 5.5.2 but without considering any program or preconditions), and ii)

1
We conducted a user study rating how realistic were the trajectories of the agents and those

created by humans, and found no significant difference between the two groups. More details can

be found in Appendix B.4.3.
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goals (predicate combinations) in the test set are unseen during training. To evaluate

generalization, we hold out apartments 6 and 7 (see Section 2.3.2) for the Help stage

in the test sets. For the training set and test-1 set, all predicates in each goal are

from the same predicate set, whereas a goal in test-2 consists of predicates sampled

from two different predicates sets representing multi-activity scenarios (e.g., putting

groceries to the fridge and washing dishes). Note that during testing, the ground-

truth goals are not shown to the evaluated Bob agent. More details can be found

in Appendix B.2. An episode is terminated once all predicates in Alice’s goal are

satisfied (i.e., a success) or the time limit (250 steps) is reached (i.e., a failure).

Evaluation Metrics. We evaluate the performance of an AI agent by three types

of metrics: i) success rate, ii) speedup, and iii) a cumulative reward. For speedup, we

compare the episode length when Alice and Bob are working together (LHelp) with the

episode length when Alice is working alone (LAlice), i.e., LAlice/LBob � 1. To account

for both the success rate and the speedup, we define the cumulative reward of an

episode with T steps as R =
P

T

t=1 1(s
t
= sg)� 0.004, where s

t is the state at step t,

sg is the goal state. R ranges from -1 (failure) to 1 (achieving the goal in zero steps).

6.5.2 Baselines

To address this challenge, we propose a set of baselines that consist of two components

as shown in Figure 6-4: a goal inference model and a goal-conditioned helping planner

/ policy. In this paper, we assume that the AI agent has access to the ground-truth

states of objects within its field of view (but one could also use raw pixels as input).

We describe our approach for the two components below.

Goal inference. We train a goal inference model based on the symbolic rep-

resentation of states in the demonstration. At each step, we first encode the state

using a Transformer [154] over visible objects and feed the encoded state into a long

short-term memory (LSTM) [55]. We use average pooling to aggregate the latent

states from the LSTM over time and build a classifier for each predicate to infer its

count. Effectively, we build 30 classifiers, corresponding to the 30 predicates in our

taxonomy and the fact that each can appear multiple times.
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Planner

Goal Observation

Belief

Environment
Action

Figure 6-3:
Overview of
the human-like
agent.

Figure 6-4: The overall design of the baseline models. A goal
inference model infers the goal from a demonstration D and
feeds it to a helping policy (for learning-based baselines) or to
a planner to generate Bob’s action. We adopt a hierarchical
approach for all baselines.

Helping policy/planner. Due to the nature of the tasks in our challenge – e.g.,

partial observability, a large action space, sparse rewards, strict preconditions for

actions – it is difficult to search for a helping plan or learn a helping policy directly

over the agent’s actions. To mitigate these difficulties, we propose a hierarchical

architecture with two modules for both planning and RL-based approaches as shown

in Figure 6-4. At every step, given the goal inferred from the demonstration, ĝ, and

the current observation of Bob, a high-level policy or planner will output a predicate

as the best subgoal to pursue for the current step; the subgoal is subsequently fed to

a low-level policy or planner which will yield Bob’s action a
t

Bob at this step. In our

baselines, we use either a learned policy or a planner for each module. We use the

symbolic representation of visible objects as Bob’s observation o
t

Bob for all models.

We summarize the overall design of the baseline models as follows (please refer to

Appendix B.3 for the details of models and training procedures):

HP: A hierarchical planner, where the high-level planner and the low-level planner

are implemented by MCTS and regression planning (RP) respectively. This is the

same planner as the one for Alice, except that i) it has its own partial observation

and thus a different belief from Alice, and ii) when given the ground-truth goal, the

high-level planner uses Alice’s plan to avoid overlapping with her.

Hybrid: A hybrid model of RL and planning, where an RL policy serves as the

high-level policy and an RP is deployed to generated plans for each subgoal sampled

from the RL-based high-level policy. This is to train an agent equipped with basic

skills for achieving subgoals to help Alice through RL.

HRL: A hierarchical RL baseline where high-level and low-level policies are all
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learned.

Random: A naive agent that takes a random action at each step.

To show the upper bound performance in the challenge, we also provide two

oracles:

OracleB: An HP-based Bob agent with full knowledge of the environment and the

true goal of Alice.

OracleA, B: Alice has full knowledge of the environment too.

6.5.3 Results

We evaluate the Watch stage by measuring the recognition performance of the pred-

icates. The proposed model achieves a precision and recall of 0.85 and 0.96 over the

test-1 set. To evaluate the importance of seeing the full demonstration, we test a

model that takes as input the graph representation of the last observation, leading

to a precision and recall of 0.79 and 0.75. When using actions taken by Alice as

the input, the performance increases to a precision and recall of 0.99 and 0.99. The

chance precision and recall is 0.08 and 0.09.

We report the performance of our proposed baselines (average and standard error

across all episodes) in the Help stage in Figure 6-5. In addition to the full challenge

setup, we also report the performance of the helping agents using true goals (indi-

cated by the subscript TG) and using random goals (by RG), and the performance

of Alice working alone. Results show that planning-based approaches are the most

effective in helping Alice. Specifically, HPTG achieves the best performance among

non-oracle baselines by using the true goals and reasoning about Alice’s future plan,

avoiding redundant actions and collisions with her (Figure 6-6 illustrates an example

of collaboration). Using the inferred goals, both HP and Hybrid can offer effective

help. However, with a random goal inference (HPRG), a capable Bob agent becomes

counter productive – frequently undoing what Alice has achieved due to their con-

flicting goals (conflicts appear in 40% of the overall episodes, 65% for Put Groceries

and Set Meal). This calls for an AI agent with the ability to adjust its goal infer-

ence dynamically by observing Alice’s behavior in the new environment (e.g., Alice
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Figure 6-5: a) Success rate (x axis) and speedup (y axis) of all baselines and oracles.
The performance of an effective Bob agent should fall into the upper-right side of the
Alice-alone baseline in this plot. b) Cumulative reward in the overall test set and in
each household activity category (corresponding to the five predicate sets introduced
in Section 6.3).

correcting a mistake made by Bob signals incorrect goal inference). HRL works no

better than Random, even though it shares the same global policy with Hybrid.

While the high level policy selects reasonable predicates to perform the task, the low

level policy does not manage to achieve the desired goal. In most of the cases, this is

due to the agent picking the right object, but failing to put it to the target location

afterwards. This suggests that it is crucial for Bob to develop robust abilities to
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Alice alone Bob helps Alice

Alice’s plan:
ON(cupcake, table)
ON(cupcake, table)
ON(pudding, table)
ON(poundcake, table)

Alice’s plan:
ON(cupcake, table)
ON(cupcake, table)

ON(pudding, table)
ON(poundcake, table)

Bob’s plan:

Figure 6-6: Example helping plan. The arrows indicate moving directions and the
circles with black borders indicate moments when agents interacted with objects.
When working alone (left), Alice had to search different rooms; but with Bob’s help
(right), Alice could finish the task much faster.

achieve the subgoals. There is no significant difference between Random and Alice

baselines (t(99) = �1.38, p = 0.17).

We also evaluate the baselines in the test-2 set, containing tasks with multiple ac-

tivities. The goal inference model achieves a precision and recall of 0.68 and 0.64. The

performance gap from test-1 indicates that the model fails to generalize to generalize

to multi-activity scenarios, overfitting to predicate combinations seen during training.

For the Help stage, we evaluate the performance of Alice alone, as well as the best

performing baseline, HP. Alice achieves a success rate of 95.40± 0.01, while the HP

baseline achieves a success rate of 88.60±0.02 and a speedup of 0.21±0.04. Compared

to its performance in the test-1 set, the HP baseline suffers a significant performance

degradation in the test-2 set, which is a result of the lower goal recognition accuracy

in the Watch stage.

To better understand the important factors for the effectiveness of helping, we

analyze the helping behaviors exhibited in our experiments and how they affect Alice

from the following aspects.

Predicting Alice’s Future Action. When coordinating with Alice, Bob should

be able to predict Alice’s future actions to efficiently distribute the work and avoid

conflicts (Figure 6-7ab).

Helping Alice’s Belief’s Update. In addition to directly achieving predicates

in Alice’s goal, Bob can also help by influencing Alice’s belief update. A typical

behavior is that when Bob opens containers, Alice can update her belief accordingly

and find the goal object more quickly (Figure 6-7c). This is the main reason why Bob

with random actions can sometimes help speed up the task too.
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d

ca bBob and Alice both try to grab the fork Bob avoids conflict Bob’s actions change Alice’s belief

Bob blocks Alice eBob’s actions cause false belief for Alice

Both Alice and Bob 
head towards the fork.

They both try to grab the 
fork.

Alice grabs the fork while 
Bob looks elsewhere. Alice is looking for wine.

Bob opens the cabinet 
revealing the wine bottle.

Alice walks to the cabinet 
and finds the wine.

Bob blocks the room. Bob blocks the fridge.
Alice sees the apple in 
the cabinet. and puts it on the table.

When Alice comes back, the 
apple is not there anymore.

Bob later comes in
to grab the apple.

Figure 6-7: Example helping behaviors. We show more examples in the supplemen-
tary video.

Multi-level Actions. The current baselines do not consider plans over low-level

actions (e.g., pathfinding). This strategy significantly decreases the search space, but

will also result in inefficient pathfinding and inability to predict other agents’ future

paths. Consequently, Bob agent sometimes unintentionally blocks Alice (Figure 6-7d).

A better AI agent should consider actions on both levels.

False Belief. Actions taken by an agent may cause another agent to have false

beliefs (Figure 6-7e).

6.6 Human Experiments

Our ultimate goal is to build AI agents that can work with real humans. Thus, we

further conduct the following two human experiments, where Alice is controlled by a

real human.

Experiment 1: Human performing tasks alone. In this experiment, we

recruited 6 subjects to perform tasks alone by controlling Alice. Subjects were given

the same observation and action space as what the human-like agent had access

to. They could click one of the visible objects (including all rooms) and select a

corresponding action (e.g., “walking towards”, “open”) from a menu to perform. They

could also choose to move forward or turn left/right by pressing arrow keys. We

evaluated 30 tasks in the test set. Each task was performed by 2 subjects, and we

used the average steps they took as the single-agent performance for that task, which is
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Figure 6-8: a) Success rate (x axis) and speedup (y axis). b) Cumulative reward with
real humans or with the human-like agent) Subjective ratings from Exp. 2. Here,
Alice refers to humans or the human-like agent acting alone, whereas HP, Hybrid,
and HPRG indicate different AI agents helping either humans or the human-like agent.
All results are based on the same 30 tasks in the test set.

then used for computing the speedup when AI agents help humans. The performance

of a single agent when being controlled by a human or by a human-like agent in

these 30 tasks is shown in Figure 6-8ab with the label of Alice. Human players are

slightly more efficient than the human-like agent but the difference is not significant,

as reported by the t-test over the number of steps they took (t(29) = �1.63, p = .11).

Experiment 2: Collaboration with real humans. This experiment evaluates

how helpful AI agents are when working with real humans. We recruited 12 subjects

and conducted 90 trials of human-AI collaboration using the same 30 tasks as in Exp.

1. In each trial, a subject was randomly paired with one of three baseline agents,

HP, Hybrid, and HPRG, to perform a task. After each trial, subjects were asked to

rate the AI agent they just worked with on a scale of 1 to 7 based on three criteria

commonly used in prior work [56]: i) how much the agent knew about the true goal

116



Alice grabs a wine glass And puts it on the table
Bob immediately grabs the 
wine glass goes to the dishwasher and puts it there.

Bob immediately grabs it Goes to the dishwasher and puts it there

Instead of getting back the 
glass, Alice focuses on 
other subgoals first

After finishing the other
subgoals, she goes to get
the wine glass

Alice finds out
So she gets the glass out 
of the dishwasher 

and puts it back to the 
table

Bob sees that the glass 
has been put to the table

So he puts the glass back 
to the dishwasher again

After Alice puts the wine 
glass to the table

and puts it back to the 
table, completing the task.

Ground-truth goal:
ON(plate, dinnertable): 1
ON(waterglass, dinnertable): 2
ON(wineglass, dinnertable): 1
ON(fork, dinnertable): 2

A random goal sampled by Bob (HPRG):
IN(wineglass, dishwasher): 1
ON(poundcake, dinnertable): 2
IN(pancake, fridge): 2
ON(wine, dinnertable): 1

The human-like agent and HPRG

A real human player and HPRG

Figure 6-9: An example of how real human differs from the human-like agent when
working with an AI agent (i.e., HPRG) with a conflicting goal. In this example, Bob
incorrectly thinks that Alice wants to put the wine glass to the dishwasher whereas
Alice actually wants to put it to the dinner table. When controlled by a human-
like agent, Alice enters into a loop with Bob trying to change the location of the
same object. The real human player, on the other hand, avoids this conflict by first
focusing on other objects in the goal, and going back to the conflicting object after
all the other goal objects have been placed on the dinner table. Consequently, the
real human completes the full task successfully within the time limit.

(1 - no knowledge, 4 - some knowledge, 7 - perfect knowledge), ii) how helpful you

found the agent was (1 - hurting, 4 - neutral, 7 - very helpful), and iii) whether you

would trust the agent to do its job (1 - no trust, 4 - neutral, 7 - full trust). For a fair

comparison, we made sure that the random goal predictions for HPRG were the same

as the ones used in the evaluation with the human-like agent.

As shown Figure 6-8, the ranking of the three baseline AI agents remains the same

when the human-like agent is replaced by real humans, and the perceived performance
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(subjective ratings) is consistent with the objective scores. We found no significant

difference in the objective metrics between helping humans and helping the human-

like agent; the only exception is that, when paired with real humans, HPRG had a

higher success rate (and consequently a higher average cumulative reward). This is

because humans recognized that the AI agent might have conflicting subgoals and

would finish other subgoals first instead of competing over the conflicting ones with

the AI agent forever, whereas the human-like agent was unable to do so. Figure 6-9

shows an example. This adaption gave humans a better chance to complete the full

goal within the time limit. We provide more details of the procedures, results, and

analyses of the human experiments in Appendix B.4.

6.7 Discussion

In this chapter, we studied how to build and test agents that could assist humans

in household environments. A key difference with the previous work on this thesis,

is that here we were interested in agents that would not only perform activities, but

coordinate with humans in achieving them. For this, we proposed an AI challenge

to demonstrate social perception and human-AI collaboration in common household

activities, and we adapted VirtualHome to test an AI agent’s ability to reason about

other agents’ mental states and help them in unfamiliar scenarios. Our experimental

results demonstrate that the proposed challenge can systematically evaluate key as-

pects of social intelligence at scale. We also show that our human-like agent behaves

similarly to real humans in the proposed tasks and the objects metrics are consistent

with subject ratings.

While this challenge makes a step towards a better of evaluation of assistive agents,

many challenges remain. Here, we developed an agent with bounded rationality to

serve as a human proxy, but this may not be representative of how humans behave

in an environment, much less when there is another agent trying to assist them. One

way to address this is to learn a model from human behavior that can be deployed

as a built-in agent, but human behavior data is generally hard to collect and there
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are no guarantees that the learned model will be robust to new environments or to a

new agent concurrently interacting in the environment to try to help the human.

Similarly, this challenge focused in agents that could infer human goals and co-

ordinate with them using non-verbal cues. This setting opens up exciting directions

of future work in goal inference and theory of mind, but it would be worth exploring

how to build assistive agents when direct communication is allowed. Part II explored

agents that would perform activities from language instructions, but in order to be

effective assistants, agents should be able to understand commands as the task is

happening, and similarly be able to ask questions or communicate information about

the task to humans when appropriate.

Perhaps one of the most restrictive assumptions in our setting is the fact that

agents need a Watch phase to infer the goal of the human before starting collaboration.

While this assumption allows us to simplify our framework, separating goal inference

and coordination, it also reduces the usefulness of our approach. On one hand, it is

not realistic to assume that an agent will have access to a demonstration of the task

they need to help with, and in such case it may be more efficient to simplify specify

the task via language or the logical predicates. On the other hand, separating goal

inference and coordination prevents agents to re-evaluate the goal they need to help

with as the task takes place, which can result in agents hindering in the true task if

the inferred goal is not correct, as shown in Figure 6-9.

In the next chapter, we will be relaxing this assumption, and propose an agent

that can help in performing tasks without a prior demonstration or description. The

proposed agent will therefore infer the goal of the task as it happens and decide how

to best help humans with the information it has available.
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Chapter 7

Online Probabilistic Assistive Agents

7.1 Introduction

There has been growing interest in engineering socially intelligent AI agents, such as

autonomous vehicles or service robots, that can safely and productively work with

humans in the real world. Prior work on human-AI cooperation has achieved some

success in scenarios where AI agents are given the true human goals a priori or only

need to help humans in simple environments with a small state space. However, it

remains very challenging to build AI assistants that can help humans perform all the

activities of daily life in more natural settings, such as in our homes, where the space

of human goals is vast and a person’s goal at any point in time will not generally be

known with certainty.

In the previous chapter, we presented a benchmark and baselines to develop agents

that could assist humans in a variety of tasks. In that setting, helper agents were

given a demonstration of a task and were then asked to collaborate with a human

or human-like agent in completing that same task in a new environment. While this

setting allows us to test important aspects of Human-AI collaboration, such as goal

inference and coordination, it is also limited. In many real-world scenarios agents

may not have access to information about the task beforehand, and need to infer it,

to be able to help, as the human is performing it.

Our goal here is to build agents that can help people perform a wide range of
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tasks under this scenario. Our AI agents must have the ability to infer the true goals

of humans based on past observations in an online fashion, plan how to help humans

without disrupting them, and adapt to their behaviors by simultaneously updating

goal inference and helping strategies as the task progresses (as illustrated in Figure 7-

1). Such ability comes naturally to people but has proven difficult for AI agents to

date, due to two main technical obstacles. On the one hand, online goal inference in

realistic environments is extremely difficult due to large state, action, and goal spaces;

on the other hand, inaccurate or ambiguous goal inferences often lead to ineffective

or even counterproductive attempt to help in systems that are not aware of their own

uncertainty.

To address these challenges, we propose a novel human-AI cooperation method,

NOPA (Neurally-guided Online Probabilistic Assistance). As illustrated in Figure 7-2,

NOPA consists of two main components: (1) a neurally-guided online goal inference

module and (2) an uncertainty-aware helping planner. The neurally-guided online

goal inference modules first produces bottom up goal proposals from a neural network

and then maintains a set of predictions of goals and future trajectories consistent with

the observed actions via particle filtering and inverse planning. This ensures that

inferences are both fast and robust. Given the latest predictions and their certainty,

the helping planner first identifies a subgoal that is most valuable to help with and

then plans the corresponding helping actions using a symbolic planner. The resulting

helping plan can adapt to all levels of uncertainty in the predictions. For instance,

when there are multiple possible target locations for a goal object, the AI agent will

deliver the object to the human agent instead of risking misplacing the object.

For evaluation, we present a new embodied AI challenge, Online Watch-And-Help

(O-WAH). Unlike most existing challenges on AI assistance [26], in O-WAH, a helper

agent (controlled by AI) needs to infer the goal of a main agent in an online fashion and

simultaneously help achieve the inferred goal as efficiently as possible. We evaluate

agents built with NOPA and several baselines in a range of household tasks, helping

the main agent controlled by either a human player or a planner-based agent. The

experimental results show that NOPA significantly outperforms all baselines. We are
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Figure 7-1: Illustration of successful online assistance to a human user, where the
arrow shows the moving directions and the numbers indicate key steps. Without
prior observation, the AI agent initially has no knowledge about the human’s goal,
thus would opt to observe. As it observes more human actions, it becomes more and
more confident in its goal inference, so it would dynamically adjust its helping subgoal.
For instance, in this figure, the AI first sees the human walking towards a cabinet
and consequently infers that the goal involves objects inside of the cabinet. After the
human grabs 2 forks, the AI now infers the goal is to put 2 sets of dinning pieces
(plates and forks) to the dinning table or the coffee table; but since it is uncertain
about the goal location, it will hand over 2 plates to the human instead of randomly
guessing a location.

also able to observe intelligent helping strategies emerging from NOPA adapting to

new observations.

In summary, our main contribution includes (1) a neurally-guided online proba-

bilistic assistance method for effective human-AI cooperation in complex settings and

(2) a new embodied human-AI cooperation challenge, Online Watch-And-Help, as a

testbed for training and testing AI assistants to perform online goal inference and

helping in realistic virtual home environments.

7.2 Related Work

Embodied Human-AI cooperation benchmarks. We reviewed in Chapter 6

some of the existing benchmarks aimed at testing Human-AI cooperation. In this
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chapter, we extend Watch-And-Help to an online-assistance setting. As a result, the

AI helper needs to be able to infer the goal of the main agent in an online fashion, and

has to be able to help even when the goal is not fully known. We show in Table C.1

in Appendix C a table comparing similar benchmarks testing Human-AI cooperation.

Watch-And-Help and Online Watch-And-Help present a much larger action and goal

space than previous work, and test generalization to new environments.

Online goal inference. Recent online goal inference approaches generally fall

into two categories – (1) feedforward prediction that directly maps observed past

trajectories to possible goals, typically enabled by goal prediction networks [113, 24,

85, 99, 35, 171, 166, 149, 90], or (2) generative approaches such as inverse planning

[25, 114, 137, 11, 152, 172, 100, 146] and inverse reinforcement learning [2, 52, 63,

163] which conduct inference by comparing generated plans or policies of given goal

hypotheses with observed actions. Feedforward methods can learn to recognize useful

patterns for fast inference and can perform reasonably well in simple tasks (such as

destination prediction for pedestrians [85]) when trained with a large amount of data.

However, in uncertain or unfamiliar scenarios, generative approaches, in particular,

inverse planning-based methods, often outperform feedfoward prediction due to their

ability to imagine rational behaviors under various conditions. One of the main

limitations of inverse planning-based methods is that they can be extremely slow if

the goal space is very large and may have to rely on manually designed heuristics to

speed up the inference [172, 100]. Our work integrates both types of approaches to

achieve both speed and robustness.

Embodied Human-AI cooperation with unknown goals. There has been

a rich history of research on human-AI cooperation. Many of the existing works

assume a known common goal shared among human and AI partners [47, 77, 103,

118, 62, 26, 13, 58, 159]. However, in the real world, AI agents often need to infer

humans’ goals on the fly. There has been work on helping with inferred goals [39, 86,

5, 52, 64] which shows that an accurate goal inference can improve the objective and

perceived performance of AI agents. However, when the goal inference is uncertain,

helping with inferred goals often leads to counterproductive behaviors such as undoing
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at
M

Figure 7-2: Overview of our approach, which consists of an online goal inference
module and a helping planner. We represent states and goals using scene graphs (see
2.3.2). Here, st is the state at time t; atM is the main agent’s action at time t; ĝk is
the k-th goal proposal; and �̂k is the prediction of the main agent’s future trajectory
corresponding to ĝk.

finished goals, as seen in Chapter 6. For this, some prior work devised planners

under uncertain goal inference in simple environments [126]. There has also been a

recent study proposing a goal-agnostic assistance framework via empowerment [37],

which aims at changing the states to maximize an agent’s ability to reach as many

goals as possible regardless of its true intent. Despite its success in certain domains,

assisting humans in the real-world settings without the knowledge of their goals would

often result in counterproductive behaviors. Our work investigates how to design an

uncertainty-aware planner that intelligently adjusts the helping behavior ranging from

goal-agnostic strategies to goal-specific plans in a complex environment.

7.3 Neurally-guided Online Probabilistic Assistance

7.3.1 Problem setup

We define the online assistance problem as a mixed-observability Markov decision

process (MOMDP) [105], where a helper agent needs to infer a main agent’ goal

and help the main agent achieve its goal faster. This can be formalized by the tuple

hS,G,AH,O, TS , TG, Z, RH, �i. The overall state has two components: the world state,

s 2 S, which is fully observable to the helper agent, and the main agent’s goal, g 2 G,

which is partially observable to the helper agent. AH is the action space of the helper

agent. The helper agent’s observation consists of the world state and the main agent’s
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Algorithm 1 NOPA
Given the main agent’s actions a

t

M
and environment states s

t up to time t, infers
main agent’s goals and commands helper actions a

t

H
to assist on those.

1: Input: �0
M

= {(s0, a0
M

)}, st
, K, Tmax, Tprop, q, wr, wc, wm, Lmax

2: t 1, l 0

3: Q ;
4: repeat
5: Q, l GoalInf(t, Q,�t�1

M
, st, q, K, l, Tprop)

6: �
t
H
 HelpPlanner(Q, s0, st, wr, wc, wm, Lmax)

7: Execute the first action from the helping plan at
H

8: Observe at
M

, st+1
from the environment

9: t t + 1

10: until t = Tmax or the true goal has not been reached

action, i.e., O = S ⇥AM. TS(s, g, aH, s
0
) = p(s

0
|s, g, aH) is the transition function for

the world state, and TG(s, g, aH, s
0
, g

0
) = p(g

0
|s, g, aH, s

0
) is the transition function

for the goal. Z(s
0
, g

0
, aH, o) = p(o = (s, aM)|s

0
, g

0
, aH) is the conditional probability

function for the observation result. At step t+1, the helper infers the main’s goal given

main’s past trajectory upon t, i.e., �t
= {(s

⌧
, a

⌧

M)}
t

⌧=1. The expected reward function

for the helper agent is defined as RH(s, a|�
t
) = Ep(g|�t)[1(s = g)]� cH(a), where cH(a)

is the cost for action a, and 1(·) checks if the goal is satisfied in the current world state

s. � is the discount factor. Note that in this work, we assume full observability for

both agents, which is a common setting in prior work on cooperation with unknown

goals [86, 52, 64]. It is possible to extend the setting to partial observability in the

future where the helper agent needs to decide when to follow and watch the main

agent and when to execute physical actions.

7.3.2 Method Overview

To solve the online assistance problem formalized above, we propose NOPA (Neurally-

guided Online Probabilistic assistance). Figure 7-2 provides an overview of NOPA,

showing the two main components: i) Neurally-guided online goal inference, and ii)

an uncertainty-aware helping planner. As sketched in Algorithm 1, NOPA updates a

set of particles conditioned on observed states and Main agent’s actions. Each particle
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includes prediction of both the final goal and the main agent’s future trajectory lead-

ing to the corresponding goal. Common assistance frameworks [86, 52, 64] typically

only consider the final goal for helping. However, when there is unceratinty in the

goal inference, an intelligent AI assistant should seek intermediate subgoals that can

be helpful with high certainty. For that, we predict the main agent’s future trajectory

leading to the predicted final goal for each particle. We represent both intermediate

states and final goals as a set of edges in a scene graph [67], hO,Ei, as shown in Fig-

ure 7-2. Each node, o 2 O, represents an entity (agents or objects); and each edge,

e 2 E, corresponds to a predicate (e.g., IN(apple, kitchencabinet)), indicating

the spatial relationship between two entities. Such representations have been widely

adopted in a broad range of robotics and embodied AI tasks [164, 101, 174, 139].

Given the particles at each step, the uncertainty-aware helping planner assesses the

value of the edges that appear either in the final goals or in the intermediate states

of the predicted trajectories. The most valuable edge is then selected as the help-

ing subgoal. We introduce the two components in the remaining of this section and

provide more implementation details in the supplementary material.

7.3.3 Neurally-guided Online Goal Inference

Unlike prior work on online goal inference, the main objective of the online goal

inference in this work is to help the downstream task, i.e., assisting the main agent

in achieving the intended goal. This introduces additional challenges: (1) the helper

agent has to estimate the uncertainty in the inference instead of only predicting the

most probable goal; (2) it has to ensure that the inference is resilient in a dynamic

environment; and (3) the inference has to be efficient so that the helper can have a

prompt reaction to offer assistance. For this, we propose a neurally-guided online goal

inference algorithm as summarized in Algorithm 2, which combines inverse planning

and a neural network. This hybrid approach takes advantage of both types of goal

inference approaches.

Neurally-guided Goal Proposals. We use a goal proposal network (GPN) to

learn a proposal distribution q(g|s
0
, s

t
), from which we can sample K goal proposals
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Algorithm 2 GoalInf
Computes a set of goal proposals Q0, given previous goal proposals Q and main agent’s
actions and environment states, up to time t� 1, �t�1

M .
1: Input: t, Q, �

t�1
M

= {(s⌧ , a⌧
M

)}
t�1
⌧=0, st

, q, K, l, Tprop

2: Output: Updated proposals Q0
and steps since last proposal sampling l0

3: Q0
 ;

4: if Q 6= ; and l < Tprop then
5: for k = 1, · · · , |Q| do
6: if at�1

M
is part of the plan �̂k then

7: Q0
 Q0

[ {(ĝk, �̂k)}

8: end if
9: end for

10: end if
11: if Q0

= ; then . Build proposals

12: for k = 1, · · · , K do
13: ĝk ⇠ q(g|s0, st

) . Sample a goal proposal

14: �̂k  MCTS(st, ĝk, Tprop) . Sample a plan

15: Q0
 Q0

[ {(ĝk, �̂k)}

16: end for
17: l0  0

18: else
19: l0  l + 1

20: end if
21: return Q0

, l0

{ĝk}
K

k=1 given the initial state s
0 and the current state s

t (Algorithm 2, line 13). Each

goal proposal is a set of goal predicates. Here, we only consider the first state and the

current state instead of a sequence of past states for the input to GPN so that the

GPN trained on episodes with only the main agent performing the tasks can still be

robustly applied to the helping condition where the sequence of state changes could

become drastically different from the training sequences.

Rejection and Resampling. Prior work [100, 128, 44] has demonstrated that

the goal prediction from feedfoward networks may not be able to reliably assess the

uncertainty in the inference and often fail to accurately predict the goals in unseen

environments. Thus, instead of directly using the goals proposed by the GPN, we use

inverse planning to evaluate these proposals and reject the ones that are inconsistent

with the observed main agent’s actions. To model an agent’s behavior given each goal

ĝk with bounded rationality, we use the built-in planner to predict future trajectory of

the main agent in the next Tprop steps �̂k = {(ŝ
t+⌧k , â

t+⌧k)}
Tprop
⌧=1 . Specifically, the level
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of rationality can be adjusted by the number of simulations and the length of rollouts.

We then create K particles Q = {ĝk, �̂k} (Algorithm 2, line 13-14). Whenever we

observe a new action from the main agent, atM, we check if it is part of the predicted

plan for each particle (Algorithm 2, line 5-9). If for a particle k, the action is not

included in the predicted plan, then it suggests that the rational behavior under the

corresponding goal is not consistent with the observed action. Thus this particle is

likely to have an incorrect goal and needs to be rejected. When there is no particle

left or we have reached the prediction horizon Tprop, we resample another K goals

from the GPN based on the latest state and create new particles.

7.3.4 Uncertainty-aware Helping Planner

Our helping planner (Algorithm 3) considers all edges that appear in the final goal

and the intermediate states in the predicted Main agent’s plans as candidate helping

subgoals. Additionally, the helper agent may find that the objects it grabs are no

longer needed when it updates its goal inference or after the main agent achieves the

corresponding subgoals. To allow the helper agent to return those objects to their

initial locations, the helping subgoal space also includes edges in the initial state

(Algorithm 3, line 9-10). For each edge e, we estimate how long it would take the

main agent to reach that subgoal, LM(e). If this edge appears in one of the predicted

trajectories in the particles, we can conveniently estimate LM(e) based on when it

appears in the trajectories (Algorithm 3, line 15-16). If it only appears in the final

goals, we then use a fixed length, Lmax, to anticipate how many steps it would take the

main agent to reach that subgoal (Algorithm 3, line 18). We can also use MCTS to

search for a plan for the helper agent, �H(e), to reach the same subgoal (Algorithm 3,

line 25-26). Let LH(e) be the length of the helper’s plan, we then define the benefit

of helping with subgoal e as the speed up the helper agent can offer by reaching the

subgoal e, i.e., max(LM(e)�LH(e), 0). To account for the uncertainty in inference, we

estimate how likely e is going to be necessary, p(e), by counting how many particles

include e in either the intermediate states or the final goal (Algorithm 3, line 16, 19).
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Algorithm 3 HelpPlanner
Given a set of goal proposals Q and the initial and current state of the environment,
s0, st, computes a plan for the helper agent �t

H.
1: Input: Q, s0

, st
, wr, wc, wm, Lmax

2: Output: helping plan �
t
H

3: for e 2 E do
4: LM(e) 1
5: p(e) 0

6: V (e) �1
7: �H(e) ;
8: if e appears in the initial state then . Subgoals for restoring the initial state

9: LM(e) 0

10: p(e) 1

11: else
12: for k = 1, · · · , |Q| do . Estimate when the main agent can achieve subgoal e
13: if e appears in the predicted states in �̂k then
14: Let ⌧k(e) be the first step when e appears in the predicted states

15: LM(e) min(LM(e), ⌧k(e))
16: p(e) p(e) + 1/|Q|

17: else if e appears in the predicted goal ĝk then
18: LM(e) min(LM(e), Lmax)

19: p(e) p(e) + 1/|Q|

20: end if
21: end for
22: end if
23: if p(e) > 0 then
24: �H(e) MCTS(st, {e},1) . Compute helper’s plan for subgoal e
25: LH(e) |�H(e)|
26: Compute V (st, e) as Eq (7.1) . Compute the value of subgoal e
27: end if
28: end for
29: e⇤  arg max V (st, e) . Obtain subgoal with maximum value

30: return �H(e⇤) . Obtain plan for subgoal e⇤

Finally, we define a value function for selecting the best subgoal for the helper agent:

V (s
t
, e) = wrp(e)max(LM(e)� LH(e), 0)� wcLH(e)� wm(D(s

0
, ŝ(e))�D(s

0
, s

t
)),

(7.1)

where wr, wc, and wm are constant weights; D measures the difference between two

states; and ŝ(e) is the state after reaching the subgoal e from the current state s
t.

Intuitively, the three terms of the value function evaluate i) the expected benefit

of helping reach the subgoal, ii) the cost of the helper agent, and iii) the additional

state change (compared with the initial state) introduced by the subgoal. These three
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terms make sure that the helper agent selects a subgoal that i) is likely to speed up

the task with high certainty, ii) is not too costly for the helper agent, and iii) could

restore the initial states of objects that are not needed for the task respectively. After

selecting the most valuable subgoal e⇤, we execute the first action of the helping plan

�H(e
⇤
).

7.4 Online Watch-And-Help

Following the problem setup defined as Section 7.3.1, we present Online Watch-And-

Help (O-WAH), a new embodied human-AI cooperation challenge, in which a helper

agent has to infer a main agent’s goal and help reach the goal as fast as possible.

This extends Watch-And-Help (WAH), presented in Chapter 6, to an online assis-

tance problem. Like WAH, O-WAH is built in VirtualHome, focusing on household

activities in indoor environments. Unlike WAH, the helper agent in O-WAH no longer

watches a demonstration of the main agent, but instead has to simultaneously watch

main’s action, infer its goal, and decide i) whether to help and ii) how to help at each

step.

Task Definitions. Similar to WAH, the goal for each task is defined by a set

of predicates and their counts, representing the target locations of different objects

in the environment. We sample each goal in the challenge from five general types of

household tasks: set table, put dishwasher, stock fridge, prepare meal, and get snacks.

Note that we define task types only to ensure that the goals are emulating real-life

household tasks, but that this information is not provided to the helper agents. As

summarized in Table 2 in the supplementary material, different kinds of uncertainty

may arise from these tasks: i) uncertainty in the number of objects (e.g., the main

agent may want to set up a table for 1 to 3 persons), ii) uncertainty in which objects

are needed (e.g., the main agent may want to put different foods to the table for

preparing a meal), and iii) uncertainty in the target locations (e.g., the main agent

could put dining pieces to the kitchen table or the coffee table).

Training and Testing Sets. To create a training episode, we first sample a goal
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and an initial environment using one of the five training apartments and then use a

built-in planner to control the main agent to perform the task alone. The built-in

planner is the same hierarchical planner as in Chapter 6. We create a large training

set with 6,000 episodes and a small training set with 300 episodes. The testing set

has 100 episodes in the two testing apartments unseen during training.

Evaluation Metrics. We use F1-score over the goal predicates to measure the

goal inference accuracy. To evaluate the helping performance, we use speedup, where

we compare the episode length when the helper agent works with the main agent (LH)

against the episode length when the main agent works alone (LM), i.e., LM/LH � 1.

For each episode, set a time limit of 250 steps and report the average performance

across 3 runs.

7.5 Experiments

7.5.1 Baselines

To evaluate the efficacy of our approach, NOPA, we compare it against several base-

lines. Note that for all approaches that propose multiple goals, we use 20 proposals.

HPGPN: We adopt the best performing approach in the original Watch-And-Help

challenge for this baseline, which is a hierarchical planner (HP) based on the most

probable goal according to the GPN. In particular, at each step, HPGPN uses the

goal ĝ = argmax
g
q(g|s

0
, s

t
).

AFGPN: We extend HPGPN by using NOPA’s online goal inference module. We

generate a plan for each predicated goal using HP and execute the most frequent first

action among all plans.

Empowerment: In this baseline, we adopt the idea of empowerment [37], where

we uniformly sample K goals at each step, predict plans and intermediate states for

the goals, and select the most frequent edge in the intermediate state as the helping

subgoal (i.e., the most common subgoal for any goal).

HPRG: A hierarchical planner based on a randomly sampled goal at the beginning
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a. b. c.

Figure 7-3: (a) Speedup of different methods (striped bars indicate using the small
training set). Errors are standard errors. (b) F1-scores of the predicted goal over
the course of a task. The x axis is normalized in proportion to the number of steps
needed for the main agent to perform each task alone. The curves show the means
and the shaded regions show the standard errors. c) F1-scores over time for different
approaches in a single test episode, a dot indicates the number of steps a given baseline
took to complete the task. The dashed lines in (b) and (c) indicate using the small
training set.

of the episode.

We consider the following ablated methods to evaluate the effect of different com-

ponents of NOPA.

OursRG: We replace the proposal distribution q in Algorithm 2 with a uniform

distribution.

Ours-InvPlan: Ours without using inverse planning to reject inconsistent particles.

Ours-Return: Ours without returning irrelevant objects to their initial locations

(wm = 0 in Eq.(7.1)).

By default, the GPN is trained on the large training set. To evaluate the sample

efficiency of NOPA, we also report the performance of Ours and HPGPN, when

the GPN is trained on a small training set, indicated by the subscript GPN-S. To

measure the upper bound on the helping performance, we also implement an oracle

helper HPGT, which knows the ground-truth goal and is controlled by an HP.
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7.5.2 Results

Main Controlled by a Planner

We evaluate all methods with a main agent controlled by the built-in planner and re-

port the helping speedup (average and standard error across episodes) in Figure 7-3a.

For methods that have different goal inference modules, we also report the F1-score of

their goal inference results in Figure 7-3b. The speedup of the oracle agent, operat-

ing with true knowledge about the goal, HPGT is 1.29. NOPA (Ours) outperforms

all baselines, offering the highest speedup. It also achieves the best goal inference

accuracy at the early stage of the tasks, which serves the foundation of its successful

assistance. This benefit can be more clearly seen from Figure 7-3c (the improvement

margin appears to be smaller since the temporal normalization for each episode is

different). The low speedup by Empowerment suggests that online goal inference is

necessary for an effective assistance, despite its success in certain domains shown in

prior work [37]. Given that the predicted goal may be uncertain, using multiple goal

proposals leads to a better helping performance, as seen by comparing OursGPN with

HPGPN. The effect is more pronounced when the GPN is trained with fewer data and

are consequently less accurate (i.e., GPN-S). We also find that the neurally-guided

goal proposals can greatly improve the goal inference over uniform goal proposals (i.e.,

OursRG). Moreover, the results demonstrate that inverse planning is important for

filtering spurious goal proposals from GPN, significantly improving the speedup over

Ours-InvPlan since it allows the goal inference to reach an relatively high accuracy

much earlier than Ours-InvPlan and other baselines do (see Figure 7-3c). Finally, by

comparing NOPA with Ours-Return, we can see a marginal improvement in speedup

by avoiding unnecessarily distorting the environment; Ours-Return also causes un-

necessary state changes in 70.1% of all testing episodes, while NOPA only yields

unnecessary state changes in 58.9% of all testing episodes.

Figure 7-4 shows a typical successful example by NOPA, where the task is the same

as the one in Figure 7-3c. It demonstrates that NOPA can i) achieve accurate goal

inference early on by filtering out goal proposals that are inconsistent with the main
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Figure 7-4: Goal inference and plans by NOPA for the task shown in Figure 7-3c
(setting up a kitchen table for 3 persons). We show the posterior probabilities of the
top predicates and their counts based on the particles at each step, key actions of
the main agent (indicated by red dots), and key helping actions (indicated by blue
dots). At step 2, after the main agent walks towards the dishwasher, NOPA rejects
proposals involving nearby objects (e.g., apples, salmons) that are not inside of the
dishwasher, increasing the probabilities for predicates about setting up a table. After
the main agent grabs a fork at step 8, NOPA infers with high confidence that the
goal is setting up the kitchen table for at least one person. So at the following step,
the helper agent takes its very first action – walking to grab a plate. Upon seeing
Main walking to the kitchen table at step 10, the coffee table is no longer considered
as the goal location. After observing more actions, the inference converges to setting
up the kitchen table for 3 persons.

agent’s actions, ii) correctly update the goal inference and its uncertainly estimation

based on more observation, iii) plan for effective helping actions based on the filtered

goal proposals and the uncertainty in the inference. Note that the helper remains idle

but takes a useful helping action as soon as the goal inference becomes confident and

is able to avoid grabbing extra objects thanks to its gradual update of the number

objects needed.
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Main grabs a cupcake from
the microwave. Helper grabs the apple. Helper hands the apple over to Main. Main grabs the apple.

Main puts the apple in the fridge, and 
Helper goes to grab other objects.

Main grabs a wineglass. Main places it on the table. Helper 
infers that the task is to set up table.

Helper gets a fork, as Main goes to 
get a fork too. 

Main puts the fork on the table. Helper 
infers that no more forks are needed.

To avoid messing up the environment, 
Helper puts back the fork it grabbed.

a. Helper hands over an object to Main 

b.  Helper returning an extra object to its original location 

Figure 7-5: Examples of helping plans that are beyond directly achieving final goals.
The main agent is in red, and the helper agent is in blue.

b. Main controlled by humansa. Main controlled by a planner

Figure 7-6: (a) Speedup of different methods when the main agent is controlled by the
built-in planner. (b) Speedup of different methods when the main agent is controlled
by human players. Note that all results are based on the same 10 testing episodes.

From the evaluation, we also observe diverse helping behaviors enabled by NOPA

that are not just about directly achieving the inferred final goals. We show two types

of behaviors in Figure 7-5. First, the helper agent sometimes select a subgoal of

handing over objects to the main agent. For example, as illustrated in Figure 7-5a,

the helper agent hands over the apple to the main agent who is right next to the

fridge so that the task execution can be faster. Second, the helper agent can return

extra objects to their initial locations once it realizes that they are not needed for

reaching the goal (Figure 7-5b).
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Main Controlled by Humans

To evaluate how effective AI helper agents are at assisting real humans, we conducted

a human experiment where the main agent is controlled by human players. We used

10 testing episodes to run 40 trials. In each trial, a human participant was asked to

either perform the task alone (to estimate the number of steps needed for completing

each task without a helper agent) or work with an AI agent controlled by one of the

three approaches, NOPA, HPGPN, and HPRG. Note that participants did not know

which helper agent they were working with. In total, we recruited 10 participants.

The participants gave informed consent, and the experiment was approved by an

institutional review board.

As shown in Figure 7-6, the ranking of the methods remains consistent when the

main agent is controlled by human players instead of the built-in planner. We also

find that there is no significant difference in NOPA’s performance under the two

conditions (t(9) = 0.87, ⇢ = 0.40). More details about the statistical tests can be

found in the supplementary materials.

7.6 Discussion

In this chapter, we aim to build agents that can help humans with no prior knowledge

about what the goal they need to help with. For this, we propose a novel online

assistance method, Neurally-guided Online Probabilistic Assistance (NOPA), which

integrates (1) a hybrid online goal inference algorithm combining a goal proposal

network and inverse planning-based particle filtering and (2) an uncertainty-aware

helping planner that identifies valuable helping subgoals from both the final goals and

intermediate states. For a systematic and scalable evaluation, we extend Watch-And-

Help and introduce a new embodied human-AI cooperation challenge, Online Watch-

And-Help, in which a helper needs to simultaneously watch a main agent’s action,

infer its goal, and help reach the goal as fast as possible for complex daily household

tasks. We evaluate NOPA in this challenge, together with several baselines, using

a main agent controlled either by a built-in planner or by humans. Our experiment
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shows that NOPA significantly outperforms baselines in online goal inference as well

as in helping both humans and human-proxy AI driven agents.

NOPA is currently evaluated on embodied human-AI cooperation problems in

home-like environments. However, the principle behind NOPA should be applicable

to a broader range of domains, as long as goals can be defined appropriately. A

limitation in this setting is that we assumed that both agents had full observability

over the environment, where not only both agents cannot see the full physical state,

they also cannot always see each other. This is a more restrictive setting than what

we explored in Chapter 6. While this is an exciting direction for future work, it

will also introduce new challenges, making goal inference harder (i.e. observing the

main agent searching for objects gives little information about their goal), as well

as assistance, requiring an active information seeking behavior besides the present

watch-and-react paradigm.

In the last two chapters of this thesis, we focused on building agents that could

infer human goals and assist them in performing these goals effectively in a simulated

environment. We designed benchmarks and baselines to evaluate progress in this

task, and developed AI-driven agents that could simulate human-like behavior to test

collaboration at scale. We further tested our methods with real humans, showing

that these benchmarks can serve as a reasonable proxy for human-AI collaboration.

Moving from agents that perform activities in an environment to agents that in-

teract with humans in the environment is crucial if we want to build effective AI

assistants, and the third part of this thesis aimed to take a step towards this goal.

Despite promising results, many challenges remain. Human assistance involves more

challenges than helping complete a set of goals as quickly as possible, and effective

agents should also reason about human preferences in the way a task should be done,

safety, social norms, etc. In this sense, humans can exhibit a wide range of behaviors

when attempting to complete a goal, and thus we must be cautious in developing sys-

tems and training datasets that can cover a wide range of demographics, to mitigate

biases and risks, ensuring a beneficial outcome to a wider range of population.
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Chapter 8

Conclusion

In this thesis, we have studied how to build agents that could assist humans in

everyday activities. We argued about the necessity to test these agents in simulation

before deploying them into the real world, and described a roadmap to make progress

in building them. In Part I, we talked about the properties that a simulator should

have in order to enable the study of AI assistants, and proposed the VirtualHome

simulator and a knowledge base to study these problems. In Part II, we studied agents

that could perform activities alone in the environment, given human instructions

or demonstrations and in Part III we developed benchmarks and models to build

collaborative agents that could assist humans in activities while these were interacting

in the environment.

While this work focused on household environments and activities, our proposed

approach could be applied to more general scenarios, or even collaboration settings

that do not necessarily happen in a physical space. These agents could be adapted

to help people search for information on the web, make a design or as avatars that

could assist humans in virtual reality.

Simulators can enable agents to learn complex behaviors at scale and test them

safely through a wide range of tasks and scenarios, but ultimately we care about

agents that can assist humans in the real world. Using simulation to improve real

world robots has proven successful in multiple problems and domains [150, 76, 8] and

I believe that it will also be instrumental in building robots that can assist us at
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everyday tasks. For this, there are a number of challenges we need to address.

More realistic and general environments. In order to ensure that behaviors in

simulation are representative of the real world, we need to reduce the gap between

these two. Part of these efforts will involve developing algorithms that can be robust

to the shift between domains [150, 151], but it will also be key to make progress in

building better simulation tools. Most of current simulators either focus on improv-

ing rendering towards photo-realism[121, 120], building accurate physical models for

manipulation [8, 161] or providing a wide set of objects and actions for task planning.

As humans, we need to reason at different levels when performing activities, and if we

want robots to learn this via simulation, we need to be able to unify these different

levels of abstraction. While building more realistic environments can help bridge the

sim2real gap, to ensure that we build robust models, we need to be able to repre-

sent diversity in the environment. In this thesis we tested our agents in 7 predefined

apartments in VirtualHome, with diversity coming from the placement of objects and

lighting conditions. We are extending our simulator to support procedural generation

of environments, allowing to represent potentially infinitely unique apartments to test

our agents. Furthermore, here we focused on household activities, but in real life we

do everyday tasks in our households, out in the city, and a combination of the two.

Being able to represent a wide range of domains will be key if we want agents that

can help us, get groceries to prepare a dinner with friends at home.

Better human models and agents. As humans, we spend as much time, if not

more, learning to interact with other humans as with the environment around us.

If we want to build agents that can learn to interact with us, we need to provide

better human models that can be run in simulation. In Part III of this thesis, we

presented a planning-based approach to simulate humans that would perform actions

to accomplish goals, where a belief model would allow them to look for objects when

they were not visible in the environment. However, as humans we don’t only take

actions based on a set of task goals; we also consider our preferences and capabilities,

as well as those of other individuals or society, sometimes represented as non-written
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norms. We need to build models that can incorporate those factors, and for this, it will

be necessary to have 1) more flexible human models, and 2) better datasets, so that

we can learn those behaviors that are difficult to formalize in a planner. In this sense,

there is a great opportunity in incorporating data-driven human body models [153,

106, 53, 170, 16] into the simulator, allowing to represent more realistic human shapes

and motions while still being able to support long-term behaviors. Similarly, we

need to think about how to collect effectively datasets of humans to represent these

behavior, showing these humans, not only interacting with the environment, but also

collaborating among them. Section C.5.4 in Appendix C show our initial efforts

towards these goals.

Better metrics. How do we measure the effectiveness of assistive agents? In this

work we focused on measuring the accuracy with which agents executed the intended

tasks and the speed-up they offered when collaborating with humans in performing

those. However, we also want to build agents that we feel safe around, that can

be trusted and are reliable. Qualitative human studies can help us evaluate these

properties, but we need to think how these can be measured in an automatic way, so

that the can be incorporated throughout the development of assistive agents.

Building general-purpose assistive agents can have profound societal impact, and

designing the right platforms, algorithms and metrics will be key in making sure we

reach this goal safely and effectively. We hope that the work presented in this thesis

can inspire future research towards this important goal.
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Appendix A

Environment-Aware Agents

A.1 Implementation details

To train ResActGraph, we use the ground truth graphs extracted from Unity to

represent the environments. We set the propagation time K = 2 except for the

ablation studies. To train the model that ingests demonstrations to generate sketches,

we use a finetuned Resnet-18 [54] to extract image features and a 3-layer CNN to

extract features from semantic segmentation map. All the GRUs are with 256 hidden

units except for those in GGNN are with 32.

The following is the details of the model ResActGraph, Desc2sketch, and Demo2sketch:

RNN-ResActGraph. The hidden units of GRU is 256 and the hidden units of

GGNN is 32. We use Adam [71] with 3 ⇤ 10
�4 as initial learning rate and mini-batch

size 32. Schedule sampling is applied to mitigate the exposure bias. We use linear

schedule with max probability 1.0 and min probability 0.3 and decrease in 20000

steps.

Desc2sketch. We use seq2seq model with GRU. The hidden units of GRU is 256.

We use Adam with 3 ⇤ 10
�4 as initial learning rate and mini-batch size 64. Schedule

sampling is applied to mitigate the exposure bias. We use linear schedule with max

probability 1. and min probability 0. and decrease in 20000 steps.

Demo2sketch. We finetune Resnet-18 to extract image features and build an-

other CNN to ingest the ground truth semantic segmentation maps. The CNN struc-
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Conv_1+BN Conv_2+BN Conv_3+BN FC

Input
(size: 240, 320, 3)

Kernel: 5*5
Stride: 1
Padding: 2
Channel: 16

Kernel: 5*5
Stride: 1
Padding: 2
Channel: 32

Kernel: 5*5
Stride: 3
Padding: 2
Channel: 32

256

Table A.1: The model architecture of the CNN that ingests the semantic segmentation
map.

ture is shown in Table A.1. On the other hand, we use GRU to decode the sketches.

The hidden units of GRU is 256. We use Adam with 3 ⇤ 10
�4 as initial learning rate

and mini-batch size 16. Schedule sampling is applied to mitigate the exposure bias.

We use linear schedule with max probability 1. and min probability 0. and decrease

in 10000 steps.

A.2 Method for dataset augmentation

We formally describe how we augment the dataset of programs using exceptions. Let p

be the original program and e
0 the modified environment. Let �⇣ be the function that

for some exception ✓, takes a program p and environment e
0 corrects the program

into p
0. Finally, let ⌦ be the function that takes p, e as the input and outputs its

post-conditions1. We formally define the program extension as:

p
0
= �⇣(p, e

0
),

efinal =  (e
0
, p

0
)

s.t. 8j 2 ⌦(p), efinal satisfies j

(A.1)

The algorithm is shown in 4:

1
A post-condition is a condition or predicate that must always be true just after the execution

of some section of code.
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A.3 Details of the Evaluation Metrics

We compute the F1(Ĝ, G) as follows:

P(Ĝ, G) =
kT(Ĝ)k ⌦ kT(G)k

kT(Ĝ)k

R(Ĝ, G) =
kT(Ĝ)k ⌦ kT(G)k

kT(G)k

F1(Ĝ, G) =
2 · P(Ĝ, G) · R(Ĝ, G)

P(Ĝ, G) + R(Ĝ, G)

where ⌦, P, and R are the binary matching function, precision and recall respectively.

T is a function that converts graphs to tuples.

Parsability refers to the syntactic correctness of the programs, evaluating whether

Algorithm 4 Pseudo-code of the method described in Section 5.5.4. Given a program
p with preconditions �(p), the procedure produces at most n new programs.
1: procedure augment(p, �(p), n)

2: perturbed-set set()
3: while len(perturbed-set) < n do . Perturb preconditions

4: z  rand(0, 1)

5: �(p)
0
 perturb(�(p), z)

6: e0 ⇠ E�(p)0 . Sample with eq. 5.10

7: perturbed-set.add(e0)
8: end while
9: final-progs list()

10: p0  p
11: foreach e0  perturbed-set do
12: iter  1

13: valid False
14: while not valid and iter < maxiter do
15: try
16:  (p0, e0) . Execute in simulator

17: final-progs.add(p0)
18: valid True
19: catch ExceptionType
20: p0  �ExceptionType(p0, e0) . Solve with eq. A.1

21: iter  iter + 1

22: end try
23: end while
24: end foreach
25: return final-progs

26: end procedure

163



the number of object arguments given the action is valid. Sleep TV is invalid, since

Sleep does not expect any object. Executability refers to the semantic correctness,

meaning that 1) the combination of objects and actions is valid (e.g., Grab Bedroom

is invalid) and 2) the instruction can be performed under a given environment state

(e.g., Grab Mug is only valid if the mug is close).

A.4 Further analysis of the experiments

The performance of the sketch prediction from descriptions is far better than from

demonstrations (shown in Section 5.6.3). We find that only 7% of the testing vase

are more easily predicted from demonstrations than descriptions, especially for the

activities ‘pet cat’ and ‘pick up phone’. One potential reason is that the average

length of the descriptions of these activities (15.3 words) is longer than those of other

activities (13.4).

A.5 Knowledge base

A.5.1 RealEnv

We collected two knowledge bases that aim to set up our environments. The first

one, ObjectStates KB, contains information about which states correspond to which

objects. We collected 29 different states and 9 of them are considered by the simulator.

Table A.3 shows the collected states with an indication of whether they are included

in the simulator.

The second knowledge base, ObjectRelations KB, contains typical spatial relations

between objects that aims at obtaining realistic environment layouts to set up the

scene for each activity. We show a few examples of spatial relations in Table A.2. In

total, it contains 505 types of spatial relations included.
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States Examples In Sim.
On/Off Television, Computer, Microwave, Oven, Stereo X
Plugged/Unplugged Television, Computer, Microwave, Oven, Stereo X
Open/Closed Fridge, Cabinet, Folder, Bag, Purse, Blender X
Free/Occupied Sofa, Table, Sink, Toilet, Piano, Shoe Rack, Bed X
Dirty/Clean Apple, Floor, Bowl, Socks, Plate, Cupboard
Full/Empty Washing machine, Dishwasher, Measuring Cup
Grabbed Apple, Towel, Book, Glass, Plate, Toy, Cat, Pot X
Flushed Toilet
Sharpened Knife
Wet/Dry Towel, Plate, Glass, Napkin, Shirt, Toothbrush
Peeled/Sliced/Squeezed Banana, Vegetable, Fish, Fruit, Cake
Burning Plate, Pot, Pan, Fish, Water, Candle, Chicken
Frozen Water, Vegetable, Ice cream, Wine, Hamburger
Folded/Unfolded Sheets, Shirt, Jacket, Ironing Board, Placemat
Hot/Cold Plate, Bowl, Water, Hamburger, Oven, Microwave
Cooked/Raw/Rotten Egg, Fish, Vegetable, Meat, Fruit, Pasta, Pizza

Table A.2: ObjectStates KB

Object In On Nearby
Wine Glass Cupboard, Cabinet, Dish-

washer
Coffee table, Dishrack,
Kitchen Counter

Milk Fridge, Microwave, Trash-
can, Sauce pan

Kitchen counter, Table,
Pantry

Remote Control Dresser Sofa, Love Seat, Bed, Ta-
ble, Mousepad

Dvd player

Pot Microwave, Cupboard,
Cabinet

Dishrack, Kitchen
Counter, Stove

Razor Cabinet, Trashcan, Bag,
Box

Table, Bathroom counter

Cd Player Closet, Cabinet, Bag Table, Couch Stereo
Chicken Fridge, Trashcan, Freezer,

Sauce Pan, Oven
Kitchen Counter, Cutting
Board, Plate

Oven mitts Oven, Cabinet, Basket for
clothes

Table, Kitchen counter

Document Folderm Garbage Can,
Cabinet, Filing Cabinet

Desk, Sofa, Bookshelf, Mu-
sic Stand

Sheets Basket for clothes, Dresser,
Washing Machine, Cabinet

Couch, Love Seat, Bed

Table A.3: ObjectRelations KB
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A.5.2 ExceptionHandler

We show the exceptions and subroutines used to augment the dataset in Table A.4.

Each row shows the name of the exception, the case when the exception fires and a

description of the subroutine that is called to correct the given exception.

A.6 Additional Qualitative Results

We now show additional qualitative results of our RNN-ResActGraph. In Figure A-1

and Figure A-2, we use the ground truth sketches as the input to the model. Although

the generated programs are not exactly the same as the ground truth programs, the

generated program does achieve similar environment state as the environment state

of ground truth.

In Figure A-3, we show how the generated program changes when using the same

sketches but different graphs as input. We highlight the difference between two envi-

ronments with orange color. From both cases, we observe that the generated programs

achieve almost the same environment state even thought they start from different en-

vironment states.

In Figure A-4, we show the generated programs from the sketches predicted from

descriptions. It shows that sometimes our model cannot generate the exact same

program as ground truth, but the generated program does achieve similar environment

state as the environment state of the ground truth. This is also shown in the main

paper where the F1 scores of the proposed model are higher than others.

Lastly, we show one example of the of our simulators in Figure A-5
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Sketch GT Program Generated Program

[Grab] <tooth paste>
[Put] <tooth paste>  <toothbrush holder>
[Switchon] <faucet>
[Rinse] <toothbrush>

[Walk] <bathroom> (32)
[Walk] <sink> (9)
[Find] <toothbrush holder> (63)
[Turnto] <toothbrush holder> (63)
[Lookat] <toothbrush holder> (63)
[Find] <tooth paste> (15)
[Grab] <tooth paste> (15)
[Find] <toothbrush> (2)
[Grab] <toothbrush> (2)
[Walk] <toothbrush holder> (63)
[Put] <tooth paste> (15) <toothbrush holder> (63)
[Find] <faucet> (70)
[Rinse] <toothbrush> (2)
[Walk] <toothbrush holder> (63)
[Put] <toothbrush> (2) <toothbrush holder> (63)

[Walk] <bathroom> (32)
[Walk] <sink> (9)
[Find] <toothbrush holder> (63)
[Turnto] <toothbrush holder> (63)
[Lookat] <toothbrush holder> (63)
[Find] <tooth paste> (15)
[Grab] <tooth paste> (15)
[Find] <toothbrush> (53)
[Grab] <toothbrush> (53)
[Walk] <toothbrush holder> (63)
[Put] <tooth paste> (15) <toothbrush holder> (63)
[Rinse] <toothbrush> (2)
[Walk] <faucet> (70)
[Switchoff] <faucet> (70)

Environment

Faucet (70) near Sink (9)
Faucet (70) is on
Faucet (70) in Bathroom (32)
Tooth paste (15) near Sink (9)
Toothbrush holder (63) in Sink (9)
Toothbrush (2) in Bathroom (32)

Sketch GT Program Generated Program

[Wash] <hands>
[Grab] <soap>
[Rinse] <hands>
[Wipe] <hands>

[Walk] <bathroom> (41)
[Walk] <sink> (93)
[Find] <sink> (93)
[Turnto] <sink> (93)
[Find] <faucet> (10)
[Switchon] <faucet> (10)
[Find] <hands> (92)
[Wash] <hands> (92)
[Find] <soap> (77)
[Grab] <soap> (77)
[Scrub] <hands> (92)
[Putobjback] <soap> (77)
[Rinse] <hands> (92)
[Switchoff] <faucet> (10)
[Find] <towel> (8)
[Grab] <towel> (8)
[Wipe] <hands> (92)
[Putobjback] <towel> (8)

[Walk] <bathroom> (41)
[Walk] <sink> (93)
[Find] <sink> (93)
[Turnto] <sink> (93)
[Find] <faucet> (10)
[Switchon] <faucet> (10)
[Find] <hands> (92)
[Rinse] <hands> (92)
[Find] <soap> (77)
[Grab] <soap> (77)
[Squeeze] <soap> (77)
[Wash] <hands> (92)
[Rinse] <hands> (92)
[Switchoff] <faucet> (10)
[Find] <towel> (8)
[Grab] <towel> (8)
[Wipe] <hands> (92)
[Putobjback] <towel> (8)

Environment

Faucet (10) is off
Faucet (10) near Sink (93)
Faucet (10) in Bathroom (41)
Soap (77) in Bathroom (41)
Towel (8) in Bathroom (41)
Hands (92) near Sink (93) 

Sketch GT Program Generated Program

[Grab] <paper towel>
[Wipe] <hands>

[Walk] <bathroom> (81)
[Walk] <paper towel> (54)
[Find] <paper towel> (54)
[Turnto] <paper towel> (54)
[Lookat] <paper towel> (54)
[Grab] <paper towel> (54)
[Find] <hands> (4)
[Wipe] <hands> (4)

[Walk] <bathroom> (81)
[Walk] <paper towel> (54)
[Find] <paper towel> (54)
[Grab] <paper towel> (54)
[Find] <hands> (4)
[Wipe] <hands> (4)
[Putobjback] <paper towel> (54)

Environment

Hands (4) near Paper Towel (54)
Paper Towel (54) in Bathroom (81)

Figure A-1: Predictions from the RNN-ResActGraph from the GT sketch and the
environment, along with the GT programs. We color the longest common subsequence
in light green.
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Sketch GT Program Generated Program

[Putoff] <clothes jacket>
[Put] <clothes jacket>  <hanger>

[Walk] <bedroom> (28)
[Walk] <clothes jacket> (19)
[Find] <clothes jacket> (19)
[Find] <clothes jacket> (19)
[Putoff] <clothes jacket> (19)
[Grab] <clothes jacket> (19)
[Find] <hanger> (18)
[Put] <clothes jacket> (19) <hanger> (18)

[Walk] <bedroom> (28)
[Walk] <clothes jacket> (19)
[Find] <clothes jacket> (19)
[Find] <clothes jacket> (19)
[Putoff] <clothes jacket> (16)
[Grab] <clothes jacket> (16)
[Find] <bed> (4)
[Put] <clothes jacket> (19) <bed> (4)

Environment

Hanger (18) near Clothes Jacket (19)
Hanger (18) in Bedroom (28)
Bed (4) in Bedroom (28)
Clothes Jacket (19) in Character

Sketch GT Program Generated Program

[Lie] <bed>
[Sleep]

[Walk] <bedroom> (6)
[Walk] <lamp> (72)
[Switchoff] <lamp> (72)
[Walk] <bed> (79)
[Lie] <bed> (79)
[Sleep]

[Walk] <bedroom> (6)
[Walk] <bed> (79)
[Find] <lamp> (72)
[Lie] <bed> (79)
[Sleep]Environment

Lamp (72) is on
Lamp (72) near Bed (79)
Bed (79) in Bedroom (6)
Bed (79) is free

Sketch GT Program Generated Program

[Greet] <child>
[Greet] <man>
[Greet] <woman>

[Walk] <living room> (12)
[Walk] <child> (67)
[Find] <child> (67)
[Greet] <child> (67)
[Find] <man> (48)
[Greet] <man> (48)
[Find] <woman> (59)
[Greet] <woman> (59)

[Walk] <living room> (12)
[Walk] <child> (67)
[Find] <child> (67)
[Greet] <child> (67)
[Find] <woman> (59)
[Greet] <woman> (59)
[Find] <man> (48)
[Greet] <man> (48)

Environment

Man (48) near Child (67)
Woman (59) near Child (67)
Man (48) in Living Room (12)

Sketch GT Program Generated Program

[Switchon] <faucet>
[Put] <glass>  <sink>
[Drink] <glass>

[Walk] <dining room> (72)
[Walk] <sink> (22)
[Find] <glass> (99)
[Grab] <glass> (99)
[Find] <faucet> (15)
[Switchon] <faucet> (15)
[Find] <water> (5)
[Put] <glass> (99) <sink> (22)
[Grab] <glass> (99)
[Switchoff] <faucet> (15)
[Drink] <glass> (99)

[Walk] <dining room> (72)
[Walk] <glass> (99)
[Find] <glass> (99)
[Grab] <glass> (99)
[Find] <faucet> (15)
[Switchon] <faucet> (15)
[Find] <water> (5)
[Find] <sink> (22)
[Put] <glass> (99) <sink> (22)
[Grab] <glass> (99)
[Switchoff] <faucet> (15)
[Drink] <glass> (99)

Environment

Faucet (13) near Sink (68)
Faucet (13) in Dining Room (72)
Water (8) near Sink (68)
Glass (99) in Sink (68)

Figure A-2: Predictions from the RNN-ResActGraph from the GT sketch and the
environment, along with the GT programs. We color the longest common subsequence
in light green.
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Sketch [open] <washing_machine> 
[putback] <basket>  <washing_machine> 
[putback] <soap>  <washing_machine> 
[switchon] <washing_machine> 

Environment 1 Generated Program 1 Environment 2 Generated Program 2

Soap (1002) near washing
machine (1001)
Soap (1002) inside washing
machine (1001)
Washing machine (1001) is
opened
Washing machine (1001) is on
Washing machine (1001) is
plugged

[Walk] <bedroom> (273)
[Walk] <basket> (1000)
[Find] <basket> (1000)
[Grab] <basket> (1000)
[Find] <washing_machine> 
(1001)
[SwitchOff] <washing_machine> 
(1001)
[Open] <washing_machine> 
(1001)
[Put] <basket> (1000) 
<washing_machine> (1001)
[Find] <soap> (1002)
[Grab] <soap> (1002)
[Put] <soap> (1002) 
<washing_machine> (1001)
[Close] <washing_machine> 
(1001)
[SwitchOn] <washing_machine> 
(1001)

Soap (1002) near washing
machine (1001)
Washing machine (1001) is
closed
Washing machine (1001) is off
Washing machine (1001) is
unplugged

[Walk] <bedroom> (273)
[Walk] <basket> (1000)
[Find] <basket> (1000)
[Grab] <basket> (1000)
[Find] <washing_machine> (1001)
[Open] <washing_machine> (1001)
[Put] <basket> (1000) <washing_machine> 
(1001)
[Find] <soap> (1002)
[Grab] <soap> (1002)
[Put] <soap> (1002) <washing_machine> 
(1001)
[Close] <washing_machine> (1001)
[Plugin] <washing_machine> (1001)
[SwitchOn] <washing_machine> (1001)

Sketch [putback] <groceries>  <fridge> 

Environment 1 Generated Program 1 Environment 2 Generated Program 2

Grocery (1001) near fridge (1000)
Fridge (1000) in dining room (47)
Grocery (1001)  in dining room (47)
Fridge (1000) is closed

[Walk] <dining_room> (47)
[Walk] <fridge> (1000)
[Find] <fridge> (1000)
[Open] <fridge> (1000)
[Find] <groceries> (1001)
[Grab] <groceries> (1001)
[Put] <groceries> (1001) 
<fridge> (1000)
[Close] <fridge> (1000)

Grocery (1001) near fridge (1000)
Fridge (1000) in dining room (47)
Grocery (1001) in dining room (47)
Fridge (1000) is opened

[Walk] <dining_room> (47)
[Walk] <fridge> (1000)
[Find] <fridge> (1000)
[Find] <groceries> (1001)
[Grab] <groceries> (1001)
[Put] <groceries> (1001) <fridge> (1000)
[Close] <fridge> (1000)

Figure A-3: Predictions from the RNN-ResActGraph model from the same sketches
but different environments. We color the difference between environments in orange
and the longest common subsequence in light green.
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Description pick up book. sit on sofa. open 
book. read

Description turn on reading light. bring book to couch. sit on couch. <unk> 
pillow. put pillow <unk> my back. read my book.

Sketch [sit] <chair>, [read] <book> Sketch [sit] <sofa>, [read] <book>

GT Program [walk] <living_room>  (21)
[walk] <book>  (1001)
[find] <book>  (1001)
[grab] <book>  (1001)
[find] <chair>  (1002)
[sit] <chair>  (1002)
[read] <book> (1001)

GT Program [walk] <bedroom>  (276)
[walk] <book>  (1001)
[find] <book>  (1001)
[grab] <book>  (1001)
[find] <sofa>  (201)
[sit] <sofa>  (201)
[standup]  
[walk] <bookmark>  (1004)
[find] <bookmark>  (1004)
[read] <book> (1001)

Generated
Program

[walk] <living_room>  (21)
[walk] <book>  (1001)
[find] <book>  (1001)
[grab] <book>  (1001)
[find] <chair>  (1002)
[sit] <chair>  (1002)
[read] <book> (1001)

Generated
Program

[walk] <bedroom>  (276)
[walk] <book>  (1001)
[find] <book>  (1001)
[grab] <book>  (1001)
[find] <sofa>  (201)
[sit] <sofa>  (201)
[read] <book> (1001)

Figure A-4: Predictions from the RNN-ResActGraph from the predicted sketch (from
descriptions) and the environment, along with the GT programs. We color the longest
common subsequence in light green.

Walk office

Walk chair

Sit Chair

Grab mouse

Grab keyboard

Start

Figure A-5: An example of snapshots generated in VirtualHome for a given program.
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Exception name When is raised Subroutine
IS_OPEN Character aims to open some-

thing that is already open
Remove the Open instruction

IS_CLOSED Character aims to close some-
thing that is closed

Remove the Close instruction

STANDING 1) Character aims to stand up
but is not sitting, 2) Character
aims to sleep but is not lying
nor sit ting

1) Remove Stand Up, 2) Add in-
struction Sit or Lie

SITTING 1) Character aims to Sit but
is sitting, 2) Character aims to
walk but is sitting

1) Remove instruction Sit, 2)
Add instruction Stand up

NOT_CLOSE Character wants to interact
with an object but it is not close
enough

Add instruction Walk towards
the object

NOT_FACING Character wants to Watch and
object (e.g. TV) but is not fac-
ing it.

Add instruction textitTurnTo
the object

IS_ON 1) Character switches on an ob-
ject that is already on 2) Char-
acter aims to open a utility (e.g.
washing machine) before turn-
ing it off

1) Remove instruction Turn On

2) Insert an instruction Switch

Off.

IS_OFF 1) Character switches off an ob-
ject that is off, 2) character
watches TV but it is off

1) Remove instruction Switch

Off, 2) Insert Switch On

PLUGGED 1) Character plugs in an object
that is already plugged

Remove instruction PlugIn

UNPLUGGED 1) Character plugs out an ob-
ject that is plugged out 2) Char-
acter switches on an object that
is plugged out

1) Remove instruction PlugOut

2) Insert instruction PlugIn

OCCUPIED There are objects in a surface
where the character aims to sit
or lie

Obtain all the objects in the oc-
cupied surface and insert Grab

and Release instructions to re-
move them

INSIDE_CLOSED The character aims to interact
an object that is inside some
closed one (e.g. a fridge)

Obtain the object containing
the target object, and open it

FREE_HAND The Character wants to inter-
act with an object but both of
their hands are occupied

Leave one object from the
hands, Interact with object and
grab object again

Table A.4: Exceptions handled to augment the programs dataset, based on pertur-
bation of the environment
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Appendix B

Watch-And-Help

B.1 Environment Details

To ensure that we can represent agents doing complex activities in household envi-

ronments, we study the Watch-And-Help challenge in VirtualHome. In this section

we describe how we set up the environment to study this challenge.

Execution

In Section 2.4, we described two modes of execution in VirtualHome, a video mode,

to generate videos of agents performing activities, and an interactive mode, allowing

to take actions one step at a time and observe the environment resulting from those

actions. We use the execution mode for both the Watch and Help phase in this

challenge.

Observation

The environment supports symbolic and visual observations (Figure B-1a), allowing

agents to learn helping behaviors under different conditions. Here, we focus on sym-

bolic observations, which we represent as a state graph with each node representing

the class label and physical state of an object, and each edge representing the spatial

relation of two objects. We study agents with full observability of the environment,
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Egocentric Third Person Symbolic
character

table
sofa

character

cake

milk
on
on

cl
os

e

center: {x,y,z}
bounds: {bx, by, bz}
states: closed

Current Action Space
NavigationObject Interaction

Low-Level
walk to kitchen/bathroom/…

turn right/left
move forward

cabinet.1: open/close/put
cabinet.2: open/close/put
oven.3: open/close/put/turn-on
pot.4: grab/put
pan.5: grab/put
toaster.6: open/close/put/turn-onoven.3

cabinet.2cabinet.1

Multi-Modala

b

Figure B-1: a) VirtualHome provides egocentric views, third-person views and scene
graphs with symbolic state representations of objects and agents. It also offers multi-
modal inputs (RGB, segmentation, depth, 3D boxes and skeletons). b) Illustration
of the action space at one step.

meaning that they observe at every time a full graph of the environment, and partial

observability, in which they observe a subgraph with nodes corresponding to objects

in the same room as the agent and not in a closed container and edges corresponding

to spatial relationships between those nodes.

Action space

As shown in Figure B-1b, agents in the challenge can perform both high-level actions,

such as navigating towards a known location, or interacting with an observed object,

and low-level actions, such as turning or moving forward for a small step. For actions

involving interactions with entities (objects or other agents), an agent needs to specify

the indices of the intended entities (e.g., “grab h3i” stands for grabbing the object

with id 3). An agent can only interact with objects that are within its field of sight,

and therefore its action space changes at every step. When executing navigation

actions, an agent can only move 1 meter towards the target location within one step.

On average, an agent’s action space includes 167 different actions per step.
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Sampled State
Observed

Sampled

Belief

Symbolic 
Observation Environment

Hierarchal Planner

MCTS

ON(12, 31) ON(52, 31)

plate.12

plate.52

dinnertable.31

plate.12

RP

1. walk <12>
2. grab <12>
3. walk <103>

kitchen.103

4. walk <31>
5. put <31>

walk <12>

Goal ON(plate, dinnertable): 2

High-level Plan

Low-level Plan

Figure B-2: Schematic of the human-like agent. Based on the state graph sampled
from the belief, the hierarchical planner searches for a high-level plan over subgoals
using MCTS; then RP searches for a low-level plan over actions for each subgoal. The
first action of each plan is sent back to the environment for execution.

+ apple.2

radio.1

cabinet.3

Observation

Drawer Fridge Counter Cabinet

Location distribution of wine glass
Posterior

Posterior
fork wine glass apple: in cabinet

Drawer Fridge Counter Cabinet

Location distribution of wine glass
Prior

Prior
fork wine glass apple

Figure B-3: The agent’s belief is represented as the location distribution of objects,
and is updated at each step based on the previous belief and the latest observation.
In the example, the open cabinet reveals that the wine glass can not be in there, and
that there is an apple inside, updating the belief accordingly.

B.1.1 Human-like Agent

We discuss how the human-like agent works in more details here. The agent pipeline

can be seen in Figure B-2. The agent has access to a partial observation of the

environment, limited to the objects that are in the same room and not in some

closed container. The agent is equipped with a belief module (Figure B-3), that

gives information about the unseen objects, under the assumption that the existence

of objects in the environment is known, but not their location. For each object in

the environment, the belief contains a distribution of the possible locations where it
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could be. We adopt uniform distributions as the initial belief when the agent has not

observed anything.

At each time, the agent obtains a partial observation, and updates its belief dis-

tribution accordingly. Then, the belief module samples a possible world state from

the current distribution. To ensure that the belief state is consistent between steps,

we only resample object locations that violate the current belief (e.g. an object was

believed to be in the fridge but the agent sees that the fridge is in fact empty).

Based on the sampled state, a hierarchical planner will search for the optimal plan

for reaching the goal, based on the goal definition. Specifically, we use MCTS to search

for a sequence of subgoals (i.e., predicates), and then each subgoal is fed to a regression

planner (RP) that will search for an action sequence to achieve the subgoal. For the

high-level planner, the subgoal space is obtained by the intersection between what

predicates remained to be achieved and what predicates could be achieved based on

the sampled state. Note here each subgoal would specify an object instance instead

of only the object class defined in the goal so that the low-level planner will be

informed which object instances it needs to interact with. For instance, in the example

illustrated in Figure B-2, there are two plates (whose indices are 12, 52) and the

dinner table’s index is 31 according to the sampled state. There are two unsatisfied

goal predicates (i.e., two ON(plate, dinnertable)), then a possible subgoal space

for the high-level planner would be {ON(12, 31), ON(52, 31)}. For RP, it starts

from the state defined by the subgoal and searches for the low-level plan backward

until it finds an action that is part of the current action space of the agent.

To mimic human behaviors in a home setting, we also expect the human-like agent

to close containers unless it needs to look inside or put objects into them. For that, we

augment the MCTS-based high-level planner with heuristics for the closing behavior

– the agent will close an container when it finds no relevant goal objects inside or has

already grabbed/put in the all target objects out of that container. We find that this

augmentation makes the overall agent behaviors closer to what a real human would

do in a household environment.

Thanks to the hierarchical design, the planner for the human-like agent can be
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run in real-time (on average, replanning at each step only takes 0.05 second). This

also gives the agent a bounded rationality, in that the plan is not the most optimal

but is reasonably efficient. The optimality of the planner can be further tuned by the

hyper-parameters of MCTS, such as the number of simulation, the maximum number

steps in the rollouts, and the exploration coefficients.

B.1.2 Specifications

The environment can be run in a single or multiple processes. A single process runs

at 10 actions per second. We train our models using 10 processes in parallel.

B.2 More Details on the Challenge Setup

B.2.1 Predicate Sets for Goal Definitions

Table B.1: Predicate sets used for defining the goal of Alice in five types of activities.

Set up a dinner table ON(plate,dinnertable), ON(fork,dinnertable),
ON(waterglass,dinnertable), ON(wineglass,dinnertable)

Put groceries IN(cupcake,fridge), IN(pancake,fridge), IN(poundcake,fridge),
IN(pudding,fridge), IN(apple,fridge),
IN(juice,fridge), IN(wine,fridge)

Prepare a meal ON(coffeepot,dinnertable), ON(cupcake,dinnertable),
ON(pancake,dinnertable), ON(poundcake,dinnertable),
ON(pudding,dinnertable), ON(apple,dinnertable),
ON(juice,dinnertable), ON(wine,dinnertable)

Wash dishes IN(plate,dishwasher), IN(fork,dishwasher),
IN(waterglass,dishwasher), IN(wineglass,dishwasher)

Read a book HOLD(Alice,book), SIT(Alice,sofa), ON(cupcake,coffeetable),
ON(pudding,coffeetable), ON(apple,coffeetable),
ON(juice,coffeetable), ON(wine,coffeetable)

Table B.1 summarizes the five predicate sets used for defining goals. Note that we

can support more predicates for potential future extensions on the goal definitions.

B.2.2 Training and Testing Setup

During training, we randomly sample one of the 1011 training tasks for setting up a

training episode. For evaluating an AI agent on the testing set, we run each testing
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Figure B-4: Initial location distributions of all objects in the environment. Rows are
objects and columns are locations. The color indicates the frequency.

task for five times using different random seeds and report the average performance.

For training goal inference, we also provide an additional training set of 5303

demonstrations (without pairing helping environments) synthesized in the 5 training

apartments. Note that these demonstrations are exclusively used for training goal

inference models and would not be used for helping tasks.

B.2.3 Distribution of Initial Object Locations

Figure B-4 shows the initial location distribution of all objects in the helping envi-

ronments sampled for the challenge, and Figure B-5 shows the initial location distri-

butions for only the objects involved in the goal predicates.
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Figure B-5: Initial location distributions of the goal objects. Rows are objects and
columns are locations. The color indicates the frequency.
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Figure B-6: Network architecture of the goal inference model, which encodes the
symbolic state sequence in demonstrations and infers the count for each predicate.

B.3 Implementation Details of Baselines

B.3.1 Goal Inference Module

Figure B-6 shows the architecture of the goal inference model described in the paper,

where d = 128 indicates the dimension of vectors. In this network, the LSTM has 128

hidden units and the MLP units are comprised of two 128-dim fully connected layers.

For both node embeddings and the latent states from the LSTM, we use average

pooling.

B.3.2 Hierarchical Planner

The hierarchical planner (HP) baseline is similar to the planner designed for the

human-like agent (Section B.1.1) but has its own observation and belief. When given

the ground-truth goal of Alice, the MCTS-based high-level planner will remove the

subgoal that Alice is going to pursue from its own subgoal space.

B.3.3 General Training Procedure for RL-based Approaches

We train the high-level RL policy by giving ground-truth goals and by using RP as the

low-level planner to reach the subgoals sampled from the high-level policy. Whenever

a goal predicate is satisfied (either by Alice or by Bob), Bob will get a reward of

+2; it will also get a -0.1 penalty after each time step. We adopt the multi-task RL
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Figure B-7: Network architecture of the low-level policy in the HRL baseline. Note
that the object selection policy also considers “Null” as a dummy object node for
actions that do not involve an object, which is not visualized here.

approach introduced in [130] to train the low-level policy in a single-agent setting,

where we randomly sample one of the predicates in the goal in each training episode

and set it to be the objective for Bob. This is to ensure that Bob can learn to achieve

subgoals through the low-level policy by himself. The HRL baseline is implemented

by combining the high-level and low-level policies that are trained separately.

B.3.4 Low-level Policy

Figure B-7 illustrates the network architecture for the low-level policy. We use the

symbolic observation (only the visible object nodes) as input, and encode them in the

same way as Figure B-6 does. We encode two object classes in the given subgoal sg

(i.e., a predicate) through word2vec encoding yielding two 128-dim vectors. We then

concatenate these two vectors and feed them to a fully connected layer to get a 128-

dim goal encoding. Based on the goal encoding, we further get two attention vectors,

�object and �type. Each element of the attention vectors ranges from 0 to 1. For each

object node, we use the element-wise product of �object and its node embedding to get

its reshaped representation. Similarly, we can get the reshaped context representation

by an element-wise product of the context embedding and �type. This is inspired by a

common goal-conditioned policy network architecture [29, 130], which helps extract
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state information relevant to the goal. From each reshaped node representation, we

can get a scalar for each object representing the log-likelihood of selecting that object

to interact with for the current action. After a softmax over all the object logits,

we get the object selection policy ⇡object(k|o
t
, sg), where k is the index of the object

instance selected from all visible objects (which also includes “Null” for actions that

do not involve an object). For encoding the history, we feed the reshaped context

representation to an LSTM with 128 hidden units. Based on the latent state from

the LSTM, we get i) the action type policy ⇡type(a|o
t
, sg), which selects an action

type (i.e., “open,” “close,” “grab,” “put,” “walk,” or “follow”), and ii) the value function

V (o
t
, sg). The sampled k and a jointly define the action for the AI agent. Note that

some sampled combinations may not be valid actions, which will not be executed by

the VirtualHome environment.

In addition to the policy and value output, we also build a binary classifier for

each visible node to predict whether it is close enough for the agent to interact with

according to the symbolic graphs. This closeness prediction serves an auxiliary pre-

diction which helps the network learn a better state representation and consequently

greatly improves the sample efficiency.

In each training episode, we randomly sample a predicate from the complete goal

definition as the final goal of the agent. The agent gets a reward of 0.05 for being

close to the target object and/or location, and a reward of 10.0 when it grabs the

correct object or puts it to the correct location. Note that when training the low-level

policy, we set up a single-agent environment to ensure that the AI agent can learn to

achieve a predicate by itself.

We adopt a 2-phase curriculum learning similar to [130]: In the first phase, we

train a policy for grabbing the target object indicated in the goal. During this phase,

a training episode terminates whenever the agent grabs the correct type of object. In

the second phase, we train another policy which learns to reuse the learned grabbing

policy (which is deployed whenever the “grab” action type is sampled) to get the goal

object and then put the grabbed object to target location specified in the goal.

We use off-policy advantage actor-critic (A2C) [96] for policy optimization. The
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Figure B-8: Network architecture the high-level policy for the Hybrid and the HRL
baselines.

network is updated by RMSprop [148] with a learning rate of 0.001 and a batch size

of 32. The first phase is trained with 100,000 episodes and the second phase is trained

with 26,000 episodes.

B.3.5 High-level Policy

As Figure B-8 depicts, the high-level policy (used by Hybrid and HRL baselines)

has a similar architecture design as the low-level policy. Compared with the low-level

policy, it does not need to define object selection policy; instead, based on the latent

state from the LSTM, it outputs the policy for selecting the first and the second object

class in a predicate to form a subgoal1. It also augments the goal encoder in the low-

level policy with a sum pooling (i.e., Bag of Words) to aggregate the encoding of all

predicates in a goal, where predicates are duplicated w.r.t. their counts in the goal

definition (e.g., in Figure B-8, ON(plate, dinnertable) appears twice, which means

there are should be 2 plates on the dinnertable). Similar to the low-level policy, we

get an attention vector �g from the goal encoding to reshape the state representation.

1
Note that this is different from the subgoals generated from the high-level planner (Sec-

tion B.1.1), which would specify object instances.
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In total, the network has three outputs: the object subgoal policy for sampling the

object class name in the subgoal, the location subgoal policy for sampling the target

location class name in the subgoal, and a value function.

The high-level policy is trained with a regression planner deployed to find a low-

level plan for reaching that subgoal. Note that the regression planner searches for a

plan based on a state sampled from the agent’s belief maintained by a belief module

discussed in Section B.1.1. It will also randomly select object instances from the

sampled state that fit the defined object classes in the subgoals sampled from the

high-level policy.

Similar to the low-level policy, we use off-policy A2C for policy optimization, and

the network is updated by RMSprop with a learning rate of 0.001 and a batch size of

16. We first train the high-level policy in a single-agent setting where the AI agent is

trained to perform a task by itself; we then finetune the high-level policy in the full

training setting where the human-like agent is also present and works alongside with

the AI agent. During training, we always provide the ground-truth goal of Alice to

the AI agent.

B.4 Additional Details of Human Experiments

B.4.1 Human subjects

Both the collection of human plans as well as the evaluations in our user studies were

conducted by recruited participants, who gave informed consent.

B.4.2 Procedure for Collecting Human Plans

To collect the tasks for both experiments, we built a web interface on top of Virtu-

alHome, allowing humans to control the characters in the environment. Specifically,

the subjects in our human experiments were always asked to control Alice. At every

step, humans were given a set of visible objects, and the corresponding actions that

they could perform with those objects (in addition to the low-level actions), matching

184



the observation and action space of the human-like agent. When working with an AI

agent, both the human player and the AI agent took actions concurrently.

In both experiments, human players were given a short tutorial and had a chance

to get familiar with the controls. They were shown the exact goals to be achieved,

and were instructed to finish the task as fast as possible. For each task, we set the

same time limit, i.e., 250 steps. A task is terminated when it exceeds the time limit

or when all the goals specified have been reached.

The 30 tasks used in the human experiments were randomly sampled from the

test set and were evenly distributed across 5 task categories (i.e., 6 tasks for each

category).

In Experiment 2, each subject was asked to perform 7 or 8 trials. We made sure

that each subject got to play with all three baseline AI agents in at least 2 trials.

B.4.3 Subjective Evaluation of Single Agent Plans

To evaluate whether people think the human-like agent behaves similarly to humans

given the same goals, we recruited another 8 subjects. We showed each subject 15

videos, each of which is a video replay of a human or the human-like agent performing

one of the 30 tasks (we randomly selected one human video and one built-in agent

video for each task). For each video, subjects were given the goal and asked to

rate how much they agreed with the statement, “the character in the video behaves

similarly to a human given the same goal in this apartment,” on a Likert scale of 5 (1

is “strongly disagree,” 3 is “neutral,” and 5 is “strongly agree”)2. The average ratings

for the characters controlled by the human-like agent and by the real humans are 3.38

(±0.93) and 3.72 (±0.92) respectively. We found no significant difference between the

ratings for the human-like agent’s plans and the ratings for the real humans’ plans in

our tasks, as reported by a paired, two-tailed t-test (t(29) = �1.35, p = .19). This

demonstrates that the proposed human-like agent can produce plans that are similar

to real humans’ plans in our challenge.

2
Since we focus on the agents’ plans in this work, users were instructed to focus on the actions

taken by the agents, rather than the graphical display of their body motion.
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Based on the free responses collected from the subjects who rated these videos,

human plans look slightly more efficient sometimes since they do not look for objects

in unlikely places and avoid moving back and forth between rooms frequently. The

human-like agent behaves similarly in most of the time but would occasionally search

through the rooms in a counter-intuitive order due to its bounded rationality and the

fact that plans are sampled stochastically.

B.4.4 Additional Quantitative Analyses of Human Experiment

Results

To evaluate whether the performance of a baseline AI agent helping the human-

like agent reflects the performance of it helping real humans, we conduct paired,

two-tailed t-test for the three baselines in Experiment 2 based on their cumulative

rewards. For HPRG, there is a significant difference between helping the human-like

agent and helping real humans (t(29) = �2.36, p = .03) as discussed in Section 6.6.

However, there is no significant difference for HP (t(29) = �1.78, p = .1) and

Hybrid ((t(29) = �0.5, p = .62)). This validates that, in general, collaboration

with the human-like agent is comparable to collaboration with real humans. Given

these analyses, the training and evaluation procedure3 presented in this paper is both

scalable and comprehensive.

3
I.e., i) training AI agents with the human-like agent, and then ii) evaluating them both with

the human-like agent (in a larger test set), and with real humans (in a smaller but representative

test set).

186



Appendix C

Online Probabilistic Assistive Agents

C.1 Assumptions and Benchmarks in Prior Work

Ref. Task Domain Obs. #Actions Online goal inf. #Goals Unseen env. Scene graph repr.
[39] Doorman Gridworld Full 9 Yes 3 No Yes
[39] Kitchen 2D symbolic game Full 6 Yes 8 No Yes
[27] USAR1 Gridworld Full 72 No 13 No Yes
[64] Grasping Lab environment Full 3 Yes 3 No Yes
[64] Feeding Lab environment Full 3 Yes 3 No Yes
[26] Overcooked Gridworld Full 6 No N/A No Yes
[159] Overcooked Gridworld Full 5 No N/A No Yes
[37] Goal reaching Gridworld Full 5 Yes 25 No Yes
[37] Lunar landing Atari game Full 6 Yes 1D space3 No No
[110] WAH 3D virtual apt. Partial 167 No N/A Yes Yes
Ours Online WAH 3D virutal apt. Full 167 Yes 661 Yes Yes

Table C.1: A summary of the assumptions and benchmarks in the prior work and in
our work. Specifically, for each task, we summarize the following information: (1) the
domain; (2) the observability assumption; (3) the action space; (4) whether there is a
need for online goal inference; (5) the goal space if there is online goal inference; (6)
whether there is generalization evaluation in unseen environments; (7) and whether
the scene graph representation can be applied.

We summarize problem setups, assumptions, and benchmarks in the prior work

on AI assistance in Table C.1. Compared with the prior work, our work proposes a far

more challenging benchmark in much more realistic environments with significantly

larger action and goal spaces. The assumptions in our problem setup are also not
1
Urban Search and Rescue

2
The action space is fully specified in the paper; we estimate that there are 7 actions based on

the description in the paper.
3
The goals are landing locations in a 1D continuous space.
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stronger than those of the prior work. Moreover, our evaluation focuses on the gen-

eralization in unseen environments unlike the evaluations in the majority of the prior

work. Last but not the least, the scene graph representations can also be applied

to almost all the tasks in the prior work, except for the Atari game domain. This

comparison suggests that the evaluation in our Online Watch-And-Help challenge is a

stronger indicator of how well an online assistance method performs in complex envi-

ronments compared with the existing benchmarks. It also shows that the assumptions

in NOPA are reasonable for a broad range of tasks.

C.2 Details on the Online Watch-And-Help Chal-

lenge Setup

C.2.1 Task definitions

Table C.2 summarizes 5 task categories used in the challenge and provides a descrip-

tion of how to sample goals for each of them. All goals allow an ideal observer to

predict at least one predicate before a task is finished, so that an intelligent helper

agent is always guaranteed to have a chance to offer effective help in our online assis-

tance setting. These goals demonstrate different levels of uncertainty. For instance,

there is a single possible goal for the task get snacks, but put dishwasher has 315

unique possible goals. In addition, these goals also exhibit different types of uncer-

tainty common in real-world scenarios, such as the objects that are needed (stocking

the fridge may require to put different groceries in the fridge), the quantity of objects

(e.g., setting up a table for 1 to 3 people), or the target locations (e.g., an agent could

set up a kitchen table in the kitchen or a coffee table in the living room). In total,

there are 11 types of goal objects and 5 types of target locations, creating 119 unique

combinations of goal predicates and their counts.

188



Task Name Goal definition Goals

Set table

Set number of people N ⇠ U(1,3)

12Set OBJ ⇠ choice([waterglass, wineglass])
Set LOC ⇠ choice([kitchentable, coffeetable])
Put N plate, N fork, N OBJ on LOC

Put dishwasher
Set OBJ_POOL = [fork, plates, waterglass, wineglass]

315Set N ⇠ U(3,7)
Put N objects from OBJ_POOL on dishwasher

Stock fridge
Set OBJ_POOL = [salmon, apple, cupcake, pudding]

315Set N ⇠ U(3,7)
Put N objects from OBJ_POOL in fridge

Prepare meal

Set number of people N ⇠ U(1,3)

18Set OBJ ⇠ choice([cupcake, pudding])
Set LOC ⇠ choice([kitchentable, coffeetable, stove])
Put N salmon, N apple, N OBJ on LOC

Get snacks Put 1 remote, 1 condiment, 1 chips on coffeetable 1

Table C.2: Overview of the challenge tasks. For a given task type, we sample an
instantiation of the task according to the task definition. The third column shows
some examples of tasks.

C.2.2 Observation space

Both the main agent and the helper agent receive symbolic observations of the en-

vironment, represented as a scene graph, with nodes representing objects, and edges

representing spatial relationships between them. Unlike the original Watch-And-Help

(Chapter 6), the agents have full observability. That is, at any time, they have infor-

mation about the states of all objects and agents in the environment. In the future,

we intend to extend the current challenge to a partial observability setting.

C.2.3 Action space

Agents can navigate in the environment and interact with the objects in it. Each

action consists of a verb, indicating the type of action, and an index, indicating

which object the agent should interact with. For the agent to interact with an object

in the environment, the object needs to be in the same room as the agent, and

not inside a closed container. This means that, while agents can see all objects

throughout an episode, they can only interact with the ones that they can physically
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reach at each step. Agents can navigate towards different rooms and objects in the

environment, moving a certain distance towards the object or the room every time the

call a navigation action. The main agent moves 1 meter for every navigation action,

whereas the helper agent moves a distance of 3 meters. This allows the helper to be

able to move around faster and thus ensures that it can provide effective assistance.

C.2.4 Built-in planner

The built-in planner is the same as the one provided in the original Watch-And-

Help challenge (Chapter 6). It uses MCTS to search for subgoals (note that these

are different than the helping subgoals that the helper agent would consider); for a

given subgoal, it uses a regression planner to search for actions to reach the subgoal.

The subgoal space includes all possible objects the main agent may grab and all

the possible locations the main agent can put the grabbed objects to in the entire

environment.

C.3 Implementation Details

C.3.1 Working Example

Figure C-1 shows a working example of NOPA. NOPA first produces a set of goal

proposals from the GPN. In this example, it predicts that part of the goal could be

putting an apple (the red node) onto the kitchen table (the light brown node connected

by a pink edge) or putting an apple into the fridge (the green node connected by a

dark blue edge), among goal predicates that involve other objects. It then uses inverse

planning to reject proposals that are inconsistent with the observed main agent’s

actions. For instance, the action does not appear in the plan for the second particle,

so the corresponding particle is then rejected. NOPA evaluates all helping subgoal

candidate in the remaining particles and selects the most valuable one based on the

value function. In this example, for all the final goals, the main agent has to grab the

apple regardless of the goal location; and the helper agent can achieve that subgoal
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HOLD(Main, Apple)

…

…

……
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ĝ1

<latexit sha1_base64="CZV5UcymTkn/cDUMjvGAGWP4jbU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxWw47df65Ypbdecgq8TLSQVyNPrlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+ekjOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+SVq3qXVbd+4tK/SaPowgncArn4MEV1OEOGtAEBgqe4RXeHO28OO/Ox6K14OQzx/AHzucPxBGQYg==</latexit>

ĝ2
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Figure C-1: A working example of NOPA. (a) Sampling goal proposals from the GPN.
(b) Predicting the future plans and trajectories for the proposed goals, and rejecting
the hypotheses if the observed main agent’s action does not appear in the correspond-
ing plans. (c) Selecting the most valuable helping subgoal (the edge highlighted in
the red box) based on the value function. (d) Planning for the helper agent’s actions
to reach the selected helping subgoal.
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ph
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Figure C-2: The architecture of the goal proposal network. �s
t is a matrix encoding

the difference between the predicate counts in the states st and s
0. p is the number of

all predicate types, c is the maximum number of count, and d and h are dimensions
of intermediate layers.

faster than the main agent. Therefore, the predicate HOLD(Main, Apple) produces

a high value based on the value function. Finally, NOPA uses an MCTS planner to

generate the helping actions given the helping subgoal.
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C.3.2 Goal Proposal Network

Figure C-2 illustrates the architecture of the goal proposal network used in NOPA.

We represent the state at each step, st, as a vector of counts of different predicates.

We then represent the change of state from s
0 to s

t as the change in the counts of

different predicates. This change is denoted as�s
t, where each row is a one-hot vector,

indicating the change in the count of a specific predicate. Note that the predicates

here are about the locations of the objects. Therefore, if the count of one predicate

increases, the count for another predicate will decrease accordingly. E.g., if an apple

is moved from the fridge to the kitchen table, then the count for IN(apple, fridge)

will decrease and the count for ON(apple, kitchentable) will decrease. Since we

want to focus on where the objects are moved to for the goal inference, in �s
t, we

only record the increase in the count of each predicate, and set any decrease in the

count to 0. We feed each row of �s
t to a fully-connected layer with a dimension of d.

We flatten the resulting matrix into a vector with pd dimensions, which is encoded

to a vector of ph dimensions by an MLP (N1 layers, h dimensions). The vector is

then reshaped to a p ⇥ h matrix. An MLP (N2 layers, h dimensions) is applied to

each row followed by a softmax activation. This gives us a proposal distribution of

the count for each predicate. The final goal proposal ĝ can be sampled from these p

distributions, representing the intended change in the count of all predicates at the

end of the task. We train the GPN with a cross-entropy loss based on the counts of

the predicates in the ground-truth goals and use Adam [71] for the optimization.

Dataset to Train and Test the Goal Proposal Network

Using the task definitions in Table C.2, we sample a set of initial environments and

goals, and run our planning-based agent to generate a task demonstration for each

sampled environment and goal. This results in a training set of 6000 demonstrations,

and a test set of 100 demonstrations. Note that the 100 demonstrations from the

test set correspond to the environments and tasks included and the challenge, and

are used to measure the speed up of the proposed agents.
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The training set has 375 unique goals (e.g. combinations of predicates and counts),

or 41 unique goals if we do not consider the counts. The testing set has 53 unique

goals, or 34 when we do not consider the numbers of objects. On average, both the

training set and the testing set contain 4.6 predicates per episode, and 2.5 unique

predicates without considering the numbers of objects.

C.3.3 Details of NOPA

We follow the implementation described in [135] for the MCTS planner used in the

helping planner. In particular, the MCTS planner searches for macro actions including

get a certain object as well as put a certain object to a specified location. We then use

regression planing to search for a sequence of actions to achieve each macro action.

We define the distance metric between two states used in the value function,

D, as the difference in the counts of the predicates appearing in the states. For

instance, if one state has 2 ON(apple, kitchentable) and the other has 1 ON(apple,

kitchentable) and 1 IN(apple, fridge), then the distance between these 2 states

is 1.

C.3.4 Hyperparameters for NOPA

We summarize the hyperparamters used for NOPA in our experiments in Table C.3.

C.3.5 Computational Resources

We use a single GPU (NVIDIA GeForce GTX 1080) and a 32-core CPU. It takes 1

- 3 sec for NOPA to update the helping action for a step, which is fast enough for

real-time interactions with real human players.

C.4 Further Analysis of Results

To compare the performance of NOPA against baselines in tasks with different levels

of difficulties, we show the speedup (Figure C-3) as well as the F1-scores of goal
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Hyperparameter Value
K 20

Tmax 250
Tprop 15
wr 1
wc 1
wd 5
Lmax 100
p 136
c 9
d 100
h 128
N1 2
N2 4

Learning rate for GPN 0.0009
Batch size 256

The number of epochs 300

Table C.3: Hyperparamters used in the experiments.

Figure C-3: Speedup of different methods (striped bars indicate using the small train-
ing set). Errors are standard errors. We show the performance in the overall test set
and in each type of task.

inference (Figure C-4) in each type of task. The two most difficulty task types are

Put Dishwasher and Stock Fridge since there much more possible goals in these two

types of tasks compared with other types, causing a higher degree of uncertainty in

the goal inference. The results shown in Figure C-3 and Figure C-4 suggest that

NOPA has the largest improvement margin over baselines when the goal inference

is uncertain. This further demonstrates the benefit provided by NOPA for online

assistance in complex settings where the goal space is large.

194



Figure C-4: F1-scores of the predicted goal over the course of a task. The x axis
is normalized in proportion to the number of steps needed for the main agent to
perform each task alone. The curves show the means and the shaded regions show
the standard errors. We show the performance in the overall test set and in each type
of task.

Moreover, we observe that HPGPN performs much better than HPGPN-S but

Ours and OursGPN-S are comparable, especially in the two most difficult task types.

This means that the helping performance of OursGPN-S can match with that of

Ours in complex settings, even though the GPN in Ours is trained on a much larger

training set and has a significantly higher F-1 score for the goal inference than GPN-S

when used alone. This shows that NOPA can drastically increase the sample efficiency

in complex settings thanks to its ability to integrate a goal proposal network trained

with a small amount of data with other components of the model (in particular, the

inverse planning-based particle filtering and the uncertainty-aware helping planner)

and maintain a high performance. Since sample efficiency is critical for real world

applications where human behavior data are scarce, this result suggests potentials for
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applying NOPA to real world systems for online assistance.

Figure C-5: The helping performance of our full model with different numbers of the
particles (K).

To test how sensitive NOPA is to the number of the particles (K) used in the

online goal inference, we compare the performance of NOPA with different numbers

of particles. As shown in Figure C-5, the performance of the NOPA is not sensitive

to K, as long as K is not too small.

C.5 Details of Human Experiments

C.5.1 Participants

We recruited 10 participants (mean age = 32.3; 4 female), all with college degrees. The

participants had with no prior exposure to our system. Participants first completed

a consent form and were then given a tutorial for interacting with the user interface4.

They also had an opportunity to practice in an example task before the trials started.

C.5.2 More Details of the Statistical Testing

We measure whether there is a significant difference in the performance of NOPA

under the two conditions (helping a main agent controlled by the built-in planner

and helping a main agent controlled by human players). The residuals between both
4https://docs.google.com/document/d/1xJDmrx55RCaOq60B_CtZNABVFdfGccS0wMj6WRhMVhg/

edit?usp=sharing
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Figure C-6: Overview of the interface used to test helper agents assisting humans. We
annotate different panels (A - F) to explain the layout and the relevant information
displayed in each part of the interface.

samples are normally distributed, as reported by a D’Agostino-Pearson Test (t(10) =

2.65, ⇢ = 0.27). We thus perform a paired t-test between the speedups of NOPA

under the two conditions. The result shows that there is no significant difference in

the performance of NOPA under these two conditions (t(9) = 0.87, ⇢ = 0.40).

C.5.3 Interface

Figure C-6 shows a screenshot of the interface for the human experiment. Players are

given a description of the goal (the predicates and their counts) and the progress, as

indicated by the panel A. At any time, they can see all the objects in the environment,

represented as buttons with object names (panels B, C, and D). Buttons are only

enabled when objects can be interacted with. Green buttons indicate that the agent

is close to the corresponding objects. In the top-right panel (E), users can see a floor

plan of the apartment depicting the locations and the facing directions of the agents.

The main agent is shown in blue and the helper agent is shown in magenta. Users
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Main walks to the 
kitchen table

Main puts down 2 
plates Helper grabs 1 plate

Helper goes to put the 
plate into the 
dishwasher

Main grabs a glass of 
wine Helper grabs a fork

Main grabs another 
glass, while Helper 
brings a fork and a glass

Main brings a plate and 
a fork, Helper brings the 
2 remaining plates 

a.

b.

Figure C-7: Examples of helping plans in the AI helping human condition. Here we
show the floor plans; the locations and the facing directions of the main agent (blue)
and the helper agent (magenta); and the relevant objects (red bounding boxes). (a)
An example of successful assistance by NOPA (the goal is to set up a kitchen table
for 3 persons); (b) a failure example of HPRG caused by conflicting goals (the helper
agent tries to put plates to the dishwasher while the main agent tries to put plates
to the kitchen table).

can also check what objects agents have in their hands from panel F.

We adopt this symbolic design instead of directly providing camera views to hu-

man players to ensure that they can easily see the full state, matching with the full

observability setting of the challenge.

C.5.4 Visual Interface

While all human experiments are conducted using a symbolic representation of the

environment, mimicking the setting of the planning-based agents, we also provide,

for future use, an interface to perform activities with visual observations. Figure C-8

shows an overview of the interface. Users are provided with a first-person view of an

agent in VirtualHome which is streamed in real time via WebRTC [87]. Users can

control agents by clicking on objects within the field of view and choosing which action

they want to do with the selected object. This setting allows for more realistic assistive
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scenarios, where humans need to move around a scene to find required objects.

Figure C-8: Overview of the Visual Interface to collect interaction data (a) and
visualization of an episode (b). Users connect to the simulator using a web server,
and receive a video stream corresponding to the first-person view of an agent in the
environment (a). When they click on an object, a set of buttons appears, allowing to
chose an action to perform on the object (b).

C.5.5 Qualitative Results

Figure C-7 depicts typical examples between a helper agent and a main agent con-

trolled by a human player, including an example of successful assistance by NOPA

and a failure example of HPRG where the helper agent attempts to undo what main

agent has achieved due to conflicting goals.
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